-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathtest_arrow.py
225 lines (193 loc) · 7.65 KB
/
test_arrow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""System tests for Arrow connector."""
from typing import Optional
import pyarrow
import pytest
from google.cloud import bigquery
from google.cloud.bigquery import enums
@pytest.mark.parametrize(
("max_results", "scalars_table_name"),
(
(None, "scalars_table"), # Use BQ Storage API.
(10, "scalars_table"), # Use REST API.
(None, "scalars_extreme_table"), # Use BQ Storage API.
(10, "scalars_extreme_table"), # Use REST API.
),
)
def test_list_rows_nullable_scalars_dtypes(
bigquery_client: bigquery.Client,
scalars_table: str,
scalars_extreme_table: str,
max_results: Optional[int],
scalars_table_name: str,
):
table_id = scalars_table
if scalars_table_name == "scalars_extreme_table":
table_id = scalars_extreme_table
# TODO(GH#836): Avoid INTERVAL columns until they are supported by the
# BigQuery Storage API and pyarrow.
schema = [
bigquery.SchemaField("bool_col", enums.SqlTypeNames.BOOLEAN),
bigquery.SchemaField("bignumeric_col", enums.SqlTypeNames.BIGNUMERIC),
bigquery.SchemaField("bytes_col", enums.SqlTypeNames.BYTES),
bigquery.SchemaField("date_col", enums.SqlTypeNames.DATE),
bigquery.SchemaField("datetime_col", enums.SqlTypeNames.DATETIME),
bigquery.SchemaField("float64_col", enums.SqlTypeNames.FLOAT64),
bigquery.SchemaField("geography_col", enums.SqlTypeNames.GEOGRAPHY),
bigquery.SchemaField("int64_col", enums.SqlTypeNames.INT64),
bigquery.SchemaField("numeric_col", enums.SqlTypeNames.NUMERIC),
bigquery.SchemaField("string_col", enums.SqlTypeNames.STRING),
bigquery.SchemaField("time_col", enums.SqlTypeNames.TIME),
bigquery.SchemaField("timestamp_col", enums.SqlTypeNames.TIMESTAMP),
]
arrow_table = bigquery_client.list_rows(
table_id,
max_results=max_results,
selected_fields=schema,
).to_arrow()
schema = arrow_table.schema
bignumeric_type = schema.field("bignumeric_col").type
# 77th digit is partial.
# https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#decimal_types
assert bignumeric_type.precision in {76, 77}
assert bignumeric_type.scale == 38
bool_type = schema.field("bool_col").type
assert bool_type.equals(pyarrow.bool_())
bytes_type = schema.field("bytes_col").type
assert bytes_type.equals(pyarrow.binary())
date_type = schema.field("date_col").type
assert date_type.equals(pyarrow.date32())
datetime_type = schema.field("datetime_col").type
assert datetime_type.unit == "us"
assert datetime_type.tz is None
float64_type = schema.field("float64_col").type
assert float64_type.equals(pyarrow.float64())
geography_type = schema.field("geography_col").type
assert geography_type.equals(pyarrow.string())
int64_type = schema.field("int64_col").type
assert int64_type.equals(pyarrow.int64())
numeric_type = schema.field("numeric_col").type
assert numeric_type.precision == 38
assert numeric_type.scale == 9
string_type = schema.field("string_col").type
assert string_type.equals(pyarrow.string())
time_type = schema.field("time_col").type
assert time_type.equals(pyarrow.time64("us"))
timestamp_type = schema.field("timestamp_col").type
assert timestamp_type.unit == "us"
assert timestamp_type.tz is not None
@pytest.mark.parametrize("do_insert", [True, False])
def test_arrow_extension_types_same_for_storage_and_REST_APIs_894(
dataset_client, test_table_name, do_insert
):
types = dict(
astring=("STRING", "'x'"),
astring9=("STRING(9)", "'x'"),
abytes=("BYTES", "b'x'"),
abytes9=("BYTES(9)", "b'x'"),
anumeric=("NUMERIC", "42"),
anumeric9=("NUMERIC(9)", "42"),
anumeric92=("NUMERIC(9,2)", "42"),
abignumeric=("BIGNUMERIC", "42e30"),
abignumeric49=("BIGNUMERIC(37)", "42e30"),
abignumeric492=("BIGNUMERIC(37,2)", "42e30"),
abool=("BOOL", "true"),
adate=("DATE", "'2021-09-06'"),
adatetime=("DATETIME", "'2021-09-06T09:57:26'"),
ageography=("GEOGRAPHY", "ST_GEOGFROMTEXT('point(0 0)')"),
# Can't get arrow data for interval :(
# ainterval=('INTERVAL', "make_interval(1, 2, 3, 4, 5, 6)"),
aint64=("INT64", "42"),
afloat64=("FLOAT64", "42.0"),
astruct=("STRUCT<v int64>", "struct(42)"),
atime=("TIME", "'1:2:3'"),
atimestamp=("TIMESTAMP", "'2021-09-06T09:57:26'"),
)
columns = ", ".join(f"{k} {t[0]}" for k, t in types.items())
dataset_client.query(f"create table {test_table_name} ({columns})").result()
if do_insert:
names = list(types)
values = ", ".join(types[name][1] for name in names)
names = ", ".join(names)
dataset_client.query(
f"insert into {test_table_name} ({names}) values ({values})"
).result()
at = dataset_client.query(f"select * from {test_table_name}").result().to_arrow()
storage_api_metadata = {
at.field(i).name: at.field(i).metadata for i in range(at.num_columns)
}
at = (
dataset_client.query(f"select * from {test_table_name}")
.result()
.to_arrow(create_bqstorage_client=False)
)
rest_api_metadata = {
at.field(i).name: at.field(i).metadata for i in range(at.num_columns)
}
assert rest_api_metadata == storage_api_metadata
assert rest_api_metadata["adatetime"] == {
b"ARROW:extension:name": b"google:sqlType:datetime"
}
assert rest_api_metadata["ageography"] == {
b"ARROW:extension:name": b"google:sqlType:geography",
b"ARROW:extension:metadata": b'{"encoding": "WKT"}',
}
def test_list_rows_range_csv(
bigquery_client: bigquery.Client,
scalars_table_csv: str,
):
table_id = scalars_table_csv
schema = [
bigquery.SchemaField(
"range_date", enums.SqlTypeNames.RANGE, range_element_type="DATE"
),
]
arrow_table = bigquery_client.list_rows(
table_id,
selected_fields=schema,
).to_arrow()
schema = arrow_table.schema
expected_type = pyarrow.struct(
[("start", pyarrow.date32()), ("end", pyarrow.date32())]
)
range_type = schema.field("range_date").type
assert range_type == expected_type
def test_to_arrow_query_with_empty_results(bigquery_client):
"""
JSON regression test for https://github.com/googleapis/python-bigquery/issues/1580.
"""
job = bigquery_client.query(
"""
select
123 as int_col,
'' as string_col,
to_json('{}') as json_col,
struct(to_json('[]') as json_field, -1 as int_field) as struct_col,
[to_json('null')] as json_array_col,
from unnest([])
"""
)
table = job.to_arrow()
assert list(table.column_names) == [
"int_col",
"string_col",
"json_col",
"struct_col",
"json_array_col",
]
assert table.shape == (0, 5)
struct_type = table.field("struct_col").type
assert struct_type.get_field_index("json_field") == 0
assert struct_type.get_field_index("int_field") == 1