
D. G. BOBROW, Editor

Flow Diagrams, Turing Machines
And Languages With Only Two
Formation Rules

CORRADO]~JHM AND GIUSEPPE JACOPINI
International Computation Centre and Istituto Nazionale
per le Applicazioni del Calcolo, Roma, Italy

In the first part of the paper, flow diagrams are introduced
to represent inter ah mappings of a set into itself. Although
not every diagram is decomposable into a finite numbm of
given base diagrams, this becomes hue at a semantical level
due to a suitable extension of the given set and of the basic
mappings defined in it. Two normalization methods of flow
diagrams are given. The first has |hree base diagrams; the
second, only two.

In the second part of the paper, the second method is ap-
plied to 'lhe theory of Turing machines. With every Turing
maching provided with a two-way half-tape, ihere is associ-
ated a similar machine, doing essentially 'lhe same job, but
working on a tape obtained from the first one by interspersing
alternate blank squares. The new machine belongs to the
family, elsewhere introduced, generated by composition and
iteration from the two machines X and R. That family is a
proper subfamily of the whole family of Turing machines.

1. In troduct ion and S u m m a r y

The set of block or flow diagrams is a two-dimensional
programming language, which was used at the beginning
of automatic computing and which now still enjoys a
certain favor. As far as is known, a systematic theory of
this language does not exist. At the most, there are some
papers by Peter [1], Gorn [2], Hermes [3], Ciampa [4],
Riguet [5], Ianov [6], Asser [7], where flow diagrams are
introduced with different purposes and defined in connec-
tion with the descriptions of algorithms or programs.

This paper was presented as an invited talk at the 1964 Inter-
national Colloquium on Algebraic Linguistics and Automata
Theory, Jerusalem, Israel. Preparation of the manuscript was
supported by National Science Foundation Grant GP-2880.

This work was carried out at the Istituto Nazionale per le
Applicazioni del Calcolo (INAC) in collaboration with the In-
ternational Computation Centre (ICC), under the Italian Con-
siglio Nazionale delle Ricerche (CNR) Research Group No. 22
for 1953-64.

In this paper, flow diagrams are introduced by the
ostensive method; this is done to avoid definitions which
certainly would not be of much use. In the first par t
(writ ten by G. Jacopini), methods of normalization of
diagrams are studied, which allow them to be decomposed
into base diagrams of three types (first result) or of two
types (second result). In the second par t of the paper (by
C. BShm), some results of a previous paper are reported
[8] and the results of the first par t of this paper are then
used to prove that every Turing machine is reducible into,
or in a deternfined sense is equivalent to, a program
written in a language which admits as formation rules
only composition and iteration.

2. Normal izat ion of Flow Diagrams

I t is a well-known fact that a flow daigram is suitable
for representing programs, computers, Turing machines,
etc. Diagrams are usually composed of boxes mutual ly
connected by oriented lines. The boxes are of functional
type (see Figure 1) when they represent elementary opera-
tions to be carried out on an unspecified object x of a
set X, the former of which may be imagined concretely
as the set of the digits contained in the memory of a
computer, the tape configuration of a Turing machine,
etc. There are other boxes of predicative type (see Figure
2) which do not operate on an object but decide on the
next operation to be carried out, according to whether or
not a certain property of x E X occurs. Examples of
diagrams are: Z(c~, 8, % a, b, c) [Figure 3] and
~5(c~, ~, , , ~, E, a, b, c, d, e) [see Figure 4]. I t is easy to see
a difference between them. Inside the diagram ~, some
parts which may be considered as a diagram can be iso-
lated in such a way
denote, respectively,
natural to write

Z(o~, /~, ~, a, b, c)

that if 11(a, b), a(c~, a), zX(a, a, b)
the diagrams of Figures 5-7, it is

= a(~, ~(¢, a (, , a), 11(b, c))) .

Nothing of this kind can be done for what concerns ~5 ;
the same happens for the entire infinite class of similar
diagrams

fh[= ~] , f t 2 , ~ a , " " , f t ~ , . . . ,

whose formation rule can be easily imagined.
Let us say tha t while ~ is decomposable according to

subdiagrams 1I, ft and A, the diagrams of the type ft~ are
not decomposable. From the last consideration, which
should be obvious to anyone who tries to isolate with a

366 C o m m u n i c a t i o n s o f t h e A C M V o l u m e 9 / N u m b e r 5 / May, 1966

~FLL~

/~Dse

FIGS. 1-2. Functional and predicative boxes

""

FiG. 3. Diagram of

FIG. 4. Diagram of ~5

FIGS. 5-6. Diagrams of II and f~

FIGS. 7-8. Diagrams of A and q,

FIGS. 9-10. Diagram of A and a diagram equivalent to

FIGS. 11-12. Diagrams equivalent to A and

Volume 9 / Number 5 / May, 1966

broken line (as was done for ~) a part of ~,~ provided
with only one input and one output, it follows that :

It is nol possible lo decompose all flow diagrams into a
finite number of given base diagrams.

However, together with this decomposition, tha t could
be called strong, another decomposition may be considered
which is obtained by operating on a diagram equivalent
to the one to be decomposed (tha t is, the diagram has to
express the same transformation, whatever the meaning
of the boxes contained in it may be). For instance, it may
be observed tha t if we introduce ~(c~, a) [as in Figure 8]
and A(a, a) [as in Figure 9] the diagrams of ~, A and ~t
become, respectively, equivalent to Figures 10, 11 and 12.

Thus, the following decompositions may be accepted:

• (a, a) = H(a, ~(a, a))

A(a, a) = A(a, ~(a, a), a)

~(a, a) = A(a, ~(a , a)) .

Nevertheless, it is to be reckoned that the above state-
ment holds even with regard to the new wider concept of
decomposability. In fact, it does not seem possible 1 for
every ~ to find an equivalent diagram which does not
contain, as a subprogram, another ~t= or an ~t of higher
order. For instance, note tha t

~a(c~, 13, % a, b, c) = A(a, H(a, ~t3(j3, % a, b, c, a))

= ~8 (~, ~ , % ~, ~ , % a, b, c, a, b, c)

and similar formulas hold for all orders of ~.
The proved unfeasibility is circumvented if a new predi-

care is added and if, among the elementary operations,
some are assumed which either add one bit of information
to the object of the computat ion or remove one from it.
The extra bits have a stack structure (formally described
below as nested ordered pairs) since it is sufficient to
operate and/or take decisions only on the topmost bit.

Therefore, three new functional boxes denoted by T,
F, K, and a new predicative box ~ are introduced. The
effect of the first two boxes is to transform the object x
into the ordered pair (v, x) where v can have only the
values t (true) or f (false); more precisely,

x r > (t , x) , x r (f , x) , (t , x) T > (t, (t , x))

and so on. Box K takes out from an ordered pair its second
component

(v, x) K> z, (t, (f, (t, x))) K> (f, (t , x)) .

The predicate oo is defined as

~ [(v , x)] = t ~ v = t ,

i.e., the predicate o0 is verified or not according to whether
the first component of the pair is T or F; w and K are
defined only on a pair; on the contrary, all the boxes

1 We did not, however, succeed in finding a plain and sufficiently
rigorous proof of this.

Communications of the ACM 367

a, ~, ~, . . . , a, b, c, . . . operating on x are not defined on
a pair. The following s ta tement holds:

I f a mapping x --~ x' is representable by any flow dia-
gram containing a, b, c, . . . , a, [~, % . . . , it is also repre-
senlable by a flow diagram decomposable into H, • and A
and containing the same boxes which occurred in the initial
diagrams, plus the boxes K, T, F and o~.

Tha t is to say, it is describable by a formula in II, q%A,
a , b, c, - . . , T , F , K , o~, ~ , % . . . , ~.

NOTE. A binary switch is the most natural in terpreta t ion of
the added bit v. I t is to be observed, however, tha t in certain
cases if the object x can be given the property of a list, any exten-
sion of the set X becomes superfluous. For example, suppose the
object of the computation is any integer x. Operations T, F, K
may be defined in a purely ari thmetic way:

x) 2 x + 1, x) 2x, x)

and the oddity predicate may be chosen for ~. The added or can-
celed bit v emerges only if x is thought of as wri t ten in the binary
notation system and if the actions of T, F, K, respectively, are
interpreted as appending a one or a zero to the far right or to erase
the r ightmost digit.

To prove this statement, observe that any flow diagram
may be included in one of the three types: I (Figure 13),
I I (Figure 14), I I I (Figure 15), where, inside the section
lines, one must imagine a par t of the diagram, in whatever
way built, tha t is called a or (B (not a subdiagram). The
branches marked 1 and 2 may not always both be pres-
ent; nevertheless, f rom every section line at least one
branch nmst start.

As for the diagrams of types I and II , if the diagrams
in Figures 16-17, are called A and B, 2 respectively, I
turns into Figure 20 and may be writ ten

I I (I I (T , ~(o~, H (I I (K , a), A))) , K)

and I I turns into Figure 21, which may be writ ten

I I (I I (T , ¢(o0, H(K, A(a, A, B)))) , K) .

The case of the diagram of type I I I (Figure 15) may be
dealt with as case I I by substituting Figure 22, where B'
indicates tha t subpart of C accessible from the upper
entrance, and C" tha t par t accessible from the lower
entrance.

If it is assumed tha t A and B are, by inductive hypoth-
esis, 3 representable in H, ¢ and A, then the s ta tement is
demonstrated.

I t is thus proved possible to completely describe a pro-
gram by means of a formula containing the names of
diagrams ,-I,, II and A. I t can also be observed tha t [t, II
and A could be chosen, since the reader has seen (see

If one of the branches 1 or 2 is missing, A will be simply Figure
18a or 18b, and similarly for B. If the diagram is of the type of
Figure 19 where V {E} (T, F), it will be simply t ranslated into
II(V, A*) where A* is the whole subdiagram represented by (~.

3 The induction really operates on the number 3N + M, where
M is the number of boxes T and F in the diagram and N is the num-
ber of all boxes of a,ay other kind (predicates included).

Fm. 13.

l . l z .

Structure of a type I diagram

2 .. • _ .
:• •" 7

: I
• •• •.•

Fm. 14. Structure of a type II diagram

12
. •••••'•• ••"•%•••

•------~.
/]

~•••.. . . , '

FIG. 15. Structure of a type I I I diagram

" ' • ' "

FIG. 16. A-diagram F1G. 17. B-diagram

. " .

.~q , _ _ z o4 :
, - " ' 3

FIG. 18a-b. Two special cases of the A-diagram

FIG. 19.

..." - . .

Diagram reducible to H (V , A*)

FiG. 20. Normalizat ion of a type I diagram

368 C o m m u n i c a t i o n s of t i le ACM V o l u m e 9 / N u m b e r 5 / May, 1966

FIG. 21. Normalization of a type I I diagram

..].2
........%

~(~
.:.... S

"... "

FIG. 23. The diagram _~

FIG. 22. Normalization of a type I I I diagram

FIG. 24. Transformation of ~(o~, X, Y)

formula and Figure 10) tha t ,I~ can be expressed using
and 11. Moreover, it is observed tha t the predicate oa
occurs only as the first a rgument of q, (or, if desired, of
~) and all the others as a rguments of a : q,(~0, X) and
~(a, X, Y), etc.

Now let us define for every predicative box a, fl, . . .
a new functional box a, fl, • - - with the following meaning:

a ~ k (a , III(T, F) , I I (F , T)) (Figure 23)

This simplifies the language. I n fact, any k(c~, X, Y) can
be replaced by (see also Figure 24):

1Fi(a, II(~(w, I I (K , H(K, H(X, H(T , T))))) ,

n(K, ~(~(~, ~(K, ~(Y, T))), g)))) .

Then we can simply write:

III(X, Y) ~ XY,

I I (I I (X , Y), Z) = i I (X , II(Y, Z)) =-- XYZ,

owing to the obvious associativity of H. We m a y also
write :4

~(~0, x) _-- (x) .

4 The same notation is followed here as in [8].

To sum up: every flow diagram where the operat ions
a, b, c, - . . and the predicates a, ~, 3' " ' " occur can be
wri t ten by means of a string where symbols of operat ions
a, b, c, - . - , a, t3, 3 ,̀ " ' " , T, F, K and parentheses (,)

appear. For example:

H(a, b) = ab

(5) ~(a, a) = .~K(Ka~K)K

(5) ¢!,(a, a) = F(Ka~K)K

A(a, a, b) = y (KKaTT)K(KbT)K

(5) A(a, a) = o~K(KaT)K

(5) ~2(a , fl, a, b)

= F(K,~(KTT)K(Kafl(KTT)K(KbFT))K)K.
m

More abstract ly, the main result can be summarized
as follows. Let

i X be a set of objects x
a set of una ry predicates c¢, fl, . . . defined in X

0 a set of mappings a, b, . . . f rom X to X
~D(~, O) the class of all mappings f rom X to X describ-

able by means of flow diagrams containing boxes
belonging to • U O.

Y the set of objects y defined by induct ion as follows:

E Y ~ (t , y) E Y, (f ,y) C Y (1)

oo a predicate, defined in Y (at least on Y -- X) by

{ ~(t , x) = t
~(f, x) f

T, F two mappings defined on Y by

K

T[y] = (t, y)

F[y] = (f, y)

a mapping defined in Y by

K[(t, y)] = K[(f, y)] = y

¢X a set of mappings a_, Ld, " ' " defined on X, with values
in Y as follows:

~tx] = -.~tx], (six], z) (2)

etc.
Now, given a set Z of objects z, a set Q of mappings

f rom Z to Z, and one unary predicate ~- defined in Z, let
us recursively define for every q C Q a new mapping
~(q), wri t ten simply (q) if no misunders tanding occurs, as

5 These fornmlas have not been obtained using the general
method as described. The application of that method would make
the formula even more cumbersome.

Volume 9 / Number 5 / May, 1966 Communica t ions of the ACM 369

follows:

~[z] - ~ (q) [z] = z
~Ir[z] --~ (q)[z] (q)[q[z]].

For every q~, q2 E Q, let us call qlq2 the mapping defined
by qlq2[z] = q2[ql[z]]. Let us call 8(7r, Q) the class of map-
pings from Z to Z defined by induction as follows:

Q c 8(~', Q)
q ~ 8 (~ - , Q) ~ (q) C 8(~r,Q)
q~E 8(~-,Q),q2E 8 (~ - , Q) ~ q , q : ~ 8(Tr, Q).

Note the following useful properties of 8:

Q1 c Q2--~ 8(7r, Q1) c 8(~-, Q2) (3)

Q: ~ 8(~-, 01) --~ 8(~-, 01 t.J Q2) = 8(~r, Q1)- (4)

The meaning of the last s tatement can easily be rewritten:

~(,I,, O) c 8(oo, 0 U,I , O {T, F, K}). (5)

3. Applications to the Theory of Turing Machines

In a previous paper [8], a programming language 6 ~' was
introduced which described, in a sense specified in that
paper, the fanfi]y 63' of Turing machines for a (leftward)
infinite tape and any finite alphabet {ci, c2, . . . , Ca} U
{ []}, where n ~ 1, [] is the symbol for the blank square
on the tape. Using the notation of Section 2 (see Note),

63' ~ ~({a}, {h, R}) (6)

where
a is the unary predicate true iff the square actually

scanned (by the Turing machine head) is blank
(i.e. contains []) ;

h is the operation of replacing the scanned symbol c~
with c~+1 (Co ~ c=+~ ~ []) and shifting the head
one square to the left;

R is the operation of shifting the head one square, if
any, to the right.

Briefly, a is a predicate, h and R are partially defined
functions s in the set X of tape configurations. By "tape
configuration" of a Turing machine is meant the content
of the tape plus the indication of the square being
scanned by the machine head.

E x a m p l e . If the configuration (at a certain time) is

x ~ . . . [] [] C x C ~ C n ,

then

~ [z] -= f , h[x] --= . . . [] []O[]Cn , R[x] - ~ " " " [] []ClCnC n

where the underscore indicates the scanned square. In
[8] a language (p" (describing a proper subfamily of Turing
machines) has been shown. I t was defined as follows.

(i) h, R E ~" (Axiom of Atomic Operations)
(if) q~, q2 E (e" implies qlq2 E (P"

(Composition Rule)

s F o r more deta i l s , see [8, 9].

(i i i) q E (P" implies (q) E (P" (I terat ion Rule)
(iv) Only the expressions that can be derived from (i),

(i i) and (i i i) belong to (P".
Interpreting ql, q2 as functions from X to X , qlq2 can be
interpreted as the composition q2 o q,, i.e.

q~q2[x] --= q2[ql[x]] x C X

and (q) can be interpreted as the composition of q with
itself ,n times : q o q ~ q=, i.e. qn[x] --= q['" "[q[x]]'" "]
where q°[x] = x and n = g~{a[q~[x]] = t}, ~ -> 0, i.e.
(q) is the minimum power of q (if it exists) such that the
scanned square, in the final configuration, is [].

From the point of view of this paper, the set 63" of the
configuration mappings described by ~" is

63" ~- 8(a, {X, R}). (7)

The drawbacks of (P" as opposed to (P' are that not all
Turing machines may be directly described by means of
(P". For instance, it was proved in [8] that the operation
H --1 (performed by the machine, which does nothing if
the scanned symbol is different from U, and otherwise
goes to the right until the first [] is scanned) cannot be
described in (P" (H -1 C 63").

Nevertheless, the most surprising property of (e" is that,
according to the commonest definition of "computing" a
function by a Turing machine, every partial recursive
function f in m ~ 0 variables can be evaluated by a pro-
gram Pf E (P" (see [8]).

Although this last property enables us to build a one-
one mapping (via a gSdelization of the Turing machines)

2f
of (P' in (P , it is here preferred to find a more direct
correspondence between Turing machines, without any
reference to partial recursive functions. To every Turing
machine M, let us associate the machine M* whose initial
(and final) tape configuration is obtained by interspersing
a blank square between every two contiguous squares of
the tape of M. During the computation, these auxiliary
squares are used to record, from right to left, the values
v of the switch stack.

5fore precisely, for every configuration x ~ . . . []u~-. .
UK--1UKUK+I " '" Um where ui C {O, cl, . . . , c=}, let us

call x* the configuration

:g

x ~ " " [] [] [] u l ' " [~UK--~[]UKOU~+I"'" O U m .

If M designates the Turing machine which when applied 7
to configuration b gives e as the final configuration, i.e. if
M[b] = e, then M* is a machine such that M*[b*] = e*.

' M* 63" We want to prove: M C 6 3 , ~ E .
Taking advantage of the theorem (5), we may write

6 3 ' c 8 (w , { ~ , R , a , T , F , K }) . (8)

Following the definition (1) of Y, the mapping x --+ x*

7 For s impl ic i ty , as in (6), Tu r i ng mach i ne s and conf igura t ion
mapp ings will be ident i f ied.

370 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 9 / N u m b e r 5 / M a y , 1966

is now ex tended to a m a p p i n g y ~ y* as follows:

if y* ~ . . . [] U K _ i [_ 2] U K . . .

(t , y)* ~-" ' ' [DUK--~DUK " " , (9)

(f, Y)* ~ " ' 'DU~- - lC lUK' ' " •
Obvious ly ,

M C ~ M ~ ~ (~ , [h , R , a , T , F , K })

and therefore

M* C ~'* ~ ~l* C ~(o0", {x*, R*, c~*, T*, F*, K*}).

I t is only necessary to p rove t h a t

~(~*, {X*, R*, a*, T*, F*, K*}) c ~(a, {h, R}).

F i r s t , observe t h a t for eve ry machine Z* ~ ~(o0", { . . . }) ,

' ° ' (Z*) ------ R " (L Z * R) L ,

where L ~ [XR]~X is the ope ra t ion of shif t ing the head
one square to the left, has been p roved ; therefore,

~(~*, {...}) c 8(~, {...} U {x, R}).

Secondly, i t can be easi ly checked t h a t

IX*, R*, T*, F*, K* / c g (a , {X, R /) .

I n fact ,

X* = XL, R* = R 2, T* = L 2,

F* = Lh, K * = R (h R) R .

According to (4) , i t has been p roved t h a t

s(~*, {...}) c s(~, {~*, x, R}).
Thi rd ly ,

*
~ ~(~, {x, R}).

F r o m formula (2) and the convent ion (9) i t mus t follow
t h a t :

_~*[... ~ u ~ [~ u ~ . . .] [~ u ~ c ~ u ~ [~ . . . (10)

a * [. . . [~ u ~ u l ~ c . . .] D u ~ u ~ c ~ c . . . (11)

w h e r e u , , u ~ ~ { ~ , c ~ , . . . , c ~ } and c ~ { c ~ . . . , c ~ } .
I n order to imp lemen t a*, the p r o g r a m LSh [which

meets condi t ions (10)] mus t be merged wi th L h L ~ [which
meets (11)]. A solut ion s can be wr i t t en in the form

c~* -= L'~R~(X) L ~ (Y) R

which obvious ly satisfies (10) . The p r o g r a m (X) can be
chosen ma in ly to copy the symbol c on the first free b l ank
square ; the p r o g r a m (Y) , to execute the inverse opera-
t ion, i.e.,

(X) [. • • [~U~ClU~DC. . .] c u ~ u ~ c ~ . . .

(Y)[. . . c u ~ [2 u ~ c ~ . . .] ~ u ~ u ~ c ~ c . . .

s The authors are indebted to the referee for this solution, which
is shorter and more elegant than theirs.

I t is not difficult to tes t t h a t the choice

(X) ~ (r ' L (X R) X L (~ R) L 2 X R 6) ,

(Y) -~ (r'RS~L4),

where r' ~ [XR] n, gives t he des i red solution.

RECEIVED NOVEMBER, 1965

REFERENCES

1. PETER, R. Graphschemata und rekursive Funktionen.
Dialectica 12 (1958), 373-393.

2. Goas, S. Specification languages for mechanical languages
and their processors. Comm. ACM. $, (Dec. 1961), 532-542.

3. HERMES, H. Aufzghlbarkeit, Entscheidbarkeit, Berechen-
barkeit. Springer Verlag, Berlin, 1961.

4. CIAMPA, S. Un'applicazione della teoria dei graft. Atli del
Convegno Nazionale di Logica, Torino 5-7 (April 1961), 73-80.

5. RIGUET, J. Programmation et th~orie des categories. Proc.
ICC Syrup. Symbolic Languages in Data Processing, Gordon
and Breach, New York, 1962, 83-98.

6. IANOV, Yu, I. On the equivalence and transformation of
program schemes. Dokl. Akad. Nauk SSSR 113, (1957),
39--42. (Russian).

7. ASSER, G. Functional algorithms and graph schema. Z.
Math. Logik u. Grundlagen Math., 7, (1961), 20--27.

8. BiJtfM, C. On a family of Turing machines and the related
programming language. ICC Bull. 3, (July 1964), 187-194.

9. B~HM, C., JACOPINI, G. Nuove tecniche di progrummazione
semplificanti la sintesi di macchine universuli di Turing.
Rend. Acc. Naz. Lincei {8}, 32, (June 1962), 913-922.

LETTERS--cont'd from page 323

O n 0 a n d O

EDITOR:
In reading the letter by Mr. Turner [On the Confusion Between

"0" and "0", Comm. ACM 9, 1 (Jan. 1966), 35], I notice that his
redefinition of the ALGOL (identifier) fails to allow those such as
"012ABC", which contain a digit immediately after the zero. I t
seems that such a combination of characters will pose no major
recognition problems, and should be allowed, providing only that
it contains a letter somewhere, other than the initial "0", which
may logically be taken as a letter or a digit.

I therefore offer an addition to Mr. Turner's redefinition:

(identifier) ::= <letter>l<identifier>(letter>[<identifier>(digit> I
0<identifier>] 0(unsigned integer>(letter)

I personally have avoided most of the confusion between the
two characters by attempting never to use either character in
mnemonic symbols unless it has some mnemonic significance and
it is difficult to take it to be the other. There are, however, some
situations which are beyond the control of the programmer, but
with which we are made to live; two of these are the FORTRAN
internal functions, MAXOF and MINOF. For situations such as
these, Mr. Turner's solution seems somewhat appropriate.

MICHAEL a. PERSHING
Department of Computer Science
University of Illinois
Urbana, Illinois 61808

Volume 9 / Number 5 / May, 1966 Communica t i ons of t he ACM 371

