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In the first part of the paper, flow diagrams are introduced 
to represent inter ah mappings of a set into itself. Although 
not every diagram is decomposable into a finite numbm of 
given base diagrams, this becomes hue at a semantical level 
due to a suitable extension of the given set and of the basic 
mappings defined in it. Two normalization methods of flow 
diagrams are given. The first has |hree base diagrams; the 
second, only two. 

In the second part of the paper, the second method is ap- 
plied to 'lhe theory of Turing machines. With every Turing 
maching provided with a two-way half-tape, ihere is associ- 
ated a similar machine, doing essentially 'lhe same job, but 
working on a tape obtained from the first one by interspersing 
alternate blank squares. The new machine belongs to the 
family, elsewhere introduced, generated by composition and 
iteration from the two machines X and R. That family is a 
proper subfamily of the whole family of Turing machines. 

1. In troduct ion  and S u m m a r y  

The set of block or flow diagrams is a two-dimensional 
programming language, which was used at  the beginning 
of automatic computing and which now still enjoys a 
certain favor. As far as is known, a systematic theory of 
this language does not exist. At the most, there are some 
papers by Peter  [1], Gorn [2], Hermes [3], Ciampa [4], 
Riguet [5], Ianov  [6], Asser [7], where flow diagrams are 
introduced with different purposes and defined in connec- 
tion with the descriptions of algorithms or programs. 
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In  this paper, flow diagrams are introduced by the 
ostensive method; this is done to avoid definitions which 
certainly would not be of much use. In  the first par t  
(writ ten by G. Jacopini),  methods of normalization of 
diagrams are studied, which allow them to be decomposed 
into base diagrams of three types (first result) or of two 
types (second result). In  the second par t  of the paper  (by 
C. BShm),  some results of a previous paper are reported 
[8] and the results of the first par t  of this paper  are then 
used to prove that  every Turing machine is reducible into, 
or in a deternfined sense is equivalent to, a program 
written in a language which admits  as formation rules 
only composition and iteration. 

2. Normal izat ion  of  Flow Diagrams 

I t  is a well-known fact that  a flow daigram is suitable 
for representing programs, computers, Turing machines, 
etc. Diagrams are usually composed of boxes mutual ly  
connected by oriented lines. The boxes are of functional 
type (see Figure 1) when they represent elementary opera- 
tions to be carried out on an unspecified object x of a 
set X, the former of which may  be imagined concretely 
as the set of the digits contained in the memory  of a 
computer, the tape configuration of a Turing machine, 
etc. There are other boxes of predicative type (see Figure 
2) which do not operate on an object but  decide on the 
next operation to be carried out, according to whether or 
not a certain property of x E X occurs. Examples of 
diagrams are: Z(c~, 8, % a, b, c) [Figure 3] and 
~5(c~, ~, , ,  ~, E, a, b, c, d, e) [see Figure 4]. I t  is easy to see 
a difference between them. Inside the diagram ~, some 
parts  which may  be considered as a diagram can be iso- 
lated in such a way 
denote, respectively, 
natural  to write 

Z(o~, /~, ~, a, b, c) 

that  if 11(a, b), a(c~, a),  zX(a, a, b) 
the diagrams of Figures 5-7, it is 

= a(~,  ~(¢,  a ( , ,  a), 11(b, c)) ) .  

Nothing of this kind can be done for what  concerns ~5 ; 
the same happens for the entire infinite class of similar 
diagrams 

fh[ = ~ ] , f t 2 , ~ a ,  " " , f t ~ ,  . . . ,  

whose formation rule can be easily imagined. 
Let us say tha t  while ~ is decomposable according to 

subdiagrams 1I, ft and A, the diagrams of the type ft~ are 
not decomposable. From the last consideration, which 
should be obvious to anyone who tries to isolate with a 
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FIGS. 1-2. Functional and predicative boxes 
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FiG. 3. Diagram of 

FIG. 4. Diagram of ~5 

FIGS. 5-6. Diagrams of II and f~ 

FIGS. 7-8. Diagrams of A and q, 

FIGS. 9-10. Diagram of A and a diagram equivalent to 

FIGS. 11-12. Diagrams equivalent to A and 
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broken line (as was done for ~) a part  of ~,~ provided 
with only one input and one output,  it follows that :  

It is nol possible lo decompose all flow diagrams into a 
finite number of given base diagrams. 

However, together with this decomposition, tha t  could 
be called strong, another decomposition may  be considered 
which is obtained by operating on a diagram equivalent 
to the one to be decomposed ( tha t  is, the diagram has to 
express the same transformation, whatever  the meaning 
of the boxes contained in it may  be). For instance, it may  
be observed tha t  if we introduce ~(c~, a) [as in Figure 8] 
and A(a, a) [as in Figure 9] the diagrams of ~, A and ~t 
become, respectively, equivalent to Figures 10, 11 and 12. 

Thus, the following decompositions may  be accepted: 

• (a, a) = H(a,  ~(a,  a ) )  

A(a, a) = A(a, ~(a,  a),  a) 

~(a,  a) = A(a, ~(a ,  a ) ) .  

Nevertheless, it is to be reckoned that  the above state- 
ment  holds even with regard to the new wider concept of 
decomposability. In  fact, it does not seem possible 1 for 
every ~ to find an equivalent diagram which does not 
contain, as a subprogram, another ~t= or an ~t of higher 
order. For instance, note tha t  

~a(c~, 13, % a, b, c) = A(a, H(a,  ~t3(j3, % a, b, c, a ) )  

= ~8 (~, ~ , %  ~, ~ , %  a, b, c, a, b, c) 

and similar formulas hold for all orders of ~. 
The proved unfeasibility is circumvented if a new predi- 

care is added and if, among the elementary operations, 
some are assumed which either add one bit of information 
to the object of the computat ion or remove one from it. 
The extra bits have a stack structure (formally described 
below as nested ordered pairs) since it is sufficient to 
operate and/or  take decisions only on the topmost  bit. 

Therefore, three new functional boxes denoted by T, 
F, K, and a new predicative box ~ are introduced. The 
effect of the first two boxes is to transform the object x 
into the ordered pair (v, x) where v can have only the 
values t ( true) or f (false); more precisely, 

x r > ( t , x ) ,  x r ( f , x ) ,  ( t , x )  T > (t,  (t ,  x ) )  

and so on. Box K takes out from an ordered pair its second 
component 

(v, x) K> z, (t, (f, (t, x))) K> (f, ( t , x ) ) .  

The predicate oo is defined as 

~ [ ( v , x ) ] = t  ~ v = t ,  

i.e., the predicate o0 is verified or not according to whether 
the first component of the pair is T or F; w and K are 
defined only on a pair; on the contrary, all the boxes 

1 We did not, however, succeed in finding a plain and sufficiently 
rigorous proof of this. 
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a, ~, ~, . . .  , a, b, c, . . .  operating on x are not defined on 
a pair. The following s ta tement  holds: 

I f  a mapping x --~ x' is representable by any flow dia- 
gram containing a, b, c, . . .  , a, [~, % . . .  , it is also repre- 
senlable by a flow diagram decomposable into H, • and A 
and containing the same boxes which occurred in the initial 
diagrams, plus the boxes K,  T, F and o~. 

Tha t  is to say, it is describable by a formula in II, q%A, 
a ,  b, c, - . .  , T ,  F ,  K ,  o~, ~ ,  % . . .  , ~. 

NOTE. A binary switch is the most natural  in terpreta t ion of 
the added bit v. I t  is to be observed, however, tha t  in certain 
cases if the object x can be given the property of a list, any exten- 
sion of the set X becomes superfluous. For example, suppose the 
object of the computation is any integer x. Operations T, F, K 
may be defined in a purely ari thmetic way: 

x ) 2 x  + 1, x ) 2x, x ) 

and the oddity predicate may be chosen for ~. The added or can- 
celed bit  v emerges only if x is thought of as wri t ten in the binary 
notation system and if the actions of T, F, K, respectively, are 
interpreted as appending a one or a zero to the far right or to erase 
the r ightmost  digit. 

To prove this statement,  observe that  any flow diagram 
may be included in one of the three types: I (Figure 13), 
I I  (Figure 14), I I I  (Figure 15), where, inside the section 
lines, one must  imagine a par t  of the diagram, in whatever  
way built, tha t  is called a or (B (not a subdiagram).  The 
branches marked 1 and 2 may  not always both be pres- 
ent; nevertheless, f rom every section line at  least one 
branch nmst  start.  

As for the diagrams of types I and II ,  if the diagrams 
in Figures 16-17, are called A and B, 2 respectively, I 
turns into Figure 20 and may  be writ ten 

I I ( I I ( T ,  ~(o~, H ( I I ( K ,  a),  A ) ) ) ,  K )  

and I I  turns into Figure 21, which may  be writ ten 

I I ( I I ( T ,  ¢(o0, H(K,  A(a, A, B ) ) ) ) ,  K) .  

The case of the diagram of type  I I I  (Figure 15) may  be 
dealt with as case I I  by substituting Figure 22, where B' 
indicates tha t  subpart  of C accessible from the upper  
entrance, and C" tha t  par t  accessible from the lower 
entrance. 

If  it is assumed tha t  A and B are, by inductive hypoth-  
esis, 3 representable in H, ¢ and A, then the s ta tement  is 
demonstrated.  

I t  is thus proved possible to completely describe a pro- 
gram by means of a formula containing the names of 
diagrams ,-I,, II  and A. I t  can also be observed tha t  [t, II  
and A could be chosen, since the reader has seen (see 

If one of the branches 1 or 2 is missing, A will be simply Figure 
18a or 18b, and similarly for B. If the diagram is of the type of 
Figure 19 where V {E} (T, F),  it will be simply t ranslated into 
II(V, A*) where A* is the whole subdiagram represented by (~. 

3 The induction really operates on the number 3N + M, where 
M is the number of boxes T and F in the diagram and N is the num- 
ber of all boxes of a,ay other kind (predicates included). 

Fm.  13. 

l . l z .  

Structure of a type I diagram 

2 .. • _ .  
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: I  
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Fm.  14. Structure of a type II  diagram 
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FIG. 15. Structure of a type I I I  diagram 
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FIG. 16. A-diagram F1G. 17. B-diagram 
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FIG. 18a-b. Two special cases of the A-diagram 

FIG. 19. 

..." - . .  

Diagram reducible to H ( V ,  A*) 

FiG. 20. Normalizat ion of a type I diagram 
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FIG. 21. Normalization of a type I I  diagram 
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FIG. 23. The diagram _~ 

FIG. 22. Normalization of a type I I I  diagram 

FIG. 24. Transformation of ~(o~, X, Y) 

formula and Figure 10) tha t  ,I~ can be expressed using 
and 11. Moreover,  it is observed tha t  the predicate oa 
occurs only as the first a rgument  of q, (or, if desired, of 
~) and all the others as a rguments  of a :  q,(~0, X)  and 
~(a, X, Y), etc. 

Now let us define for every predicative box a, fl, . . .  
a new functional box a, fl, • - - with the following meaning:  

a ~ k ( a ,  III(T, F ) ,  I I (F ,  T ) )  (Figure 23) 

This simplifies the language. I n  fact, any  k(c~, X, Y) can 
be replaced by  (see also Figure 24):  

1Fi(a, II(~(w, I I (K ,  H(K,  H(X,  H(T ,  T ) ) ) ) ) ,  

n(K, ~(~(~, ~(K, ~(Y, T))), g ) ) ) ) .  

Then we can simply write:  

III(X, Y) ~ XY,  

I I ( I I ( X ,  Y), Z)  = i I (X ,  II(Y, Z)) =-- XYZ,  

owing to the obvious associativity of H. We m a y  also 
write :4 

~(~0, x )  _-- ( x ) .  

4 The same notation is followed here as in [8]. 

To sum up:  every flow diagram where the operat ions 
a, b, c, - . .  and the predicates a, ~, 3' " ' "  occur can be 
wri t ten by  means of a string where symbols  of operat ions 
a, b, c, - . -  , a, t3, 3 ,̀ " ' "  , T, F, K and parentheses ( , )  

appear. For  example:  

H(a,  b) = ab 

(5) ~(a, a) = .~K(Ka~K)K 

(5) ¢!,(a, a) = F(Ka~K)K 

A(a, a, b) = y (KKaTT)K(KbT)K 

(5) A(a,  a) = o~K(KaT)K 

(5) ~2(a ,  fl, a, b) 

= F(K,~(KTT)K(Kafl(KTT)K(KbFT))K)K.  
m 

More abstract ly,  the main  result can be summarized 
as follows. Let  

i X be a set of objects x 
a set of una ry  predicates c¢, fl, . . .  defined in X 

0 a set of mappings  a, b, . . .  f rom X to X 
~D(~, O) the class of all mappings f rom X to X describ- 

able by  means of flow diagrams containing boxes 
belonging to • U O. 

Y the set of objects y defined by induct ion as follows: 

E Y ~  ( t , y )  E Y, ( f ,y )  C Y (1) 

oo a predicate, defined in Y (at least on Y -- X) by  

{ ~(t ,  x)  = t 
~(f, x) f 

T, F two mappings  defined on Y by  

K 

T[y] = (t, y) 

F[y] = (f, y) 

a mapping  defined in Y by  

K[(t,  y)] = K[(f, y)] = y 

¢X a set of mappings  a_, Ld, " ' "  defined on X, with values 
in Y as follows: 

~tx] = -.~tx], (six], z) (2) 

etc. 
Now, given a set Z of objects z, a set Q of mappings  

f rom Z to Z, and one unary  predicate ~- defined in Z, let 
us recursively define for every q C Q a new mapping  
~(q), wri t ten simply (q) if no misunders tanding occurs, as 

5 These fornmlas have not been obtained using the general 
method as described. The application of that method would make 
the formula even more cumbersome. 
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follows: 

~[z ]  - ~  ( q ) [ z ]  = z 
~Ir[z] --~ (q)[z] (q)[q[z]]. 

For every q~, q2 E Q, let us call qlq2 the mapping defined 
by qlq2[z] = q2[ql[z]]. Let us call 8(7r, Q) the class of map- 
pings from Z to Z defined by induction as follows: 

Q c 8(~', Q) 
q ~  8 ( ~ - , Q ) ~  (q) C 8(~r,Q) 
q~E 8(~-,Q),q2E 8 ( ~ - , Q ) ~ q , q : ~  8(Tr, Q). 

Note the following useful properties of 8: 

Q1 c Q2--~ 8(7r, Q1) c 8(~-, Q2) (3) 

Q: ~ 8(~-, 01) --~ 8(~-, 01 t.J Q2) = 8(~r, Q1)- (4) 

The meaning of the last s tatement can easily be rewritten: 

~(,I,, O) c 8(oo, 0 U,I ,  O {T, F, K}). (5) 

3. Applications to the Theory of  Turing Machines 

In a previous paper [8], a programming language 6 ~' was 
introduced which described, in a sense specified in that  
paper, the fanfi]y 63' of Turing machines for a (leftward) 
infinite tape and any finite alphabet {ci, c2, . . .  , Ca} U 
{ []}, where n ~ 1, [] is the symbol for the blank square 
on the tape. Using the notation of Section 2 (see Note), 

63' ~ ~({a}, {h, R}) (6) 

where 
a is the unary predicate true iff the square actually 

scanned (by the Turing machine head) is blank 
(i.e. contains [] ) ; 

h is the operation of replacing the scanned symbol c~ 
with c~+1 (Co ~ c=+~ ~ [] ) and shifting the head 
one square to the left; 

R is the operation of shifting the head one square, if 
any, to the right. 

Briefly, a is a predicate, h and R are partially defined 
functions s in the set X of tape configurations. By "tape 
configuration" of a Turing machine is meant the content 
of the tape plus the indication of the square being 
scanned by the machine head. 

E x a m p l e .  If the configuration (at a certain time) is 

x ~ . . .  [ ] [ ] C x C ~ C n ,  

then 

~ [ z ]  -=  f ,  h[x] --= . . .  [] []O[]Cn , R[x] - ~  " "  " [ ]  []ClCnC n 

where the underscore indicates the scanned square. In  
[8] a language (p" (describing a proper subfamily of Turing 
machines) has been shown. I t  was defined as follows. 

(i) h, R E ~" (Axiom of Atomic Operations) 
(if) q~, q2 E (e" implies qlq2 E (P" 

(Composition Rule) 

s F o r  more  deta i l s ,  see [8, 9]. 

( i i i )  q E (P" implies (q) E (P" (I terat ion Rule) 
( iv )  Only the expressions that  can be derived from (i),  

( i i )  and ( i i i )  belong to (P". 
Interpreting ql, q2 as functions from X to X ,  qlq2 can be 
interpreted as the composition q2 o q,,  i.e. 

q~q2[x] --= q2[ql[x]] x C X 

and (q) can be interpreted as the composition of q with 
itself ,n times : q o . . . .  q ~ q=, i.e. qn[x] --= q['" "[q[x]]'" "] 
where q°[x] = x and n = g~{a[q~[x]] = t}, ~ -> 0, i.e. 
(q) is the minimum power of q (if it exists) such that  the 
scanned square, in the final configuration, is []. 

From the point of view of this paper, the set 63" of the 
configuration mappings described by ~" is 

63" ~- 8(a, {X, R}). (7) 

The drawbacks of (P" as opposed to (P' are that  not all 
Turing machines may be directly described by means of 
(P". For  instance, it was proved in [8] that  the operation 
H --1 (performed by the machine, which does nothing if 
the scanned symbol is different from U, and otherwise 
goes to the right until the first [] is scanned) cannot be 
described in (P" (H -1 C 63"). 

Nevertheless, the most surprising property of (e" is that,  
according to the commonest definition of "computing" a 
function by a Turing machine, every partial recursive 
function f in m ~ 0 variables can be evaluated by a pro- 
gram Pf  E (P" (see [8]). 

Although this last property enables us to build a one-  
one mapping (via a gSdelization of the Turing machines) 

2f 
of (P' in (P , it is here preferred to find a more direct 
correspondence between Turing machines, without any 
reference to partial recursive functions. To every Turing 
machine M, let us associate the machine M* whose initial 
(and final) tape configuration is obtained by interspersing 
a blank square between every two contiguous squares of 
the tape of M. During the computation, these auxiliary 
squares are used to record, from right to left, the values 
v of the switch stack. 

5fore precisely, for every configuration x ~ . . .  [ ]u~-. .  
UK--1UKUK+I " '"  Um where ui C {O, cl,  . . .  , c=}, let us 

call x* the configuration 

:g 

x ~ " "  [ ] [ ] [ ] u l ' "  [~UK--~[]UKOU~+I"'" O U m .  

If M designates the Turing machine which when applied 7 
to configuration b gives e as the final configuration, i.e. if 
M[b] = e, then M* is a machine such that  M*[b*] = e*. 

' M* 63" We want to prove: M C 6 3 , ~  E . 
Taking advantage of the theorem (5), we may write 

6 3 ' c  8 ( w , { ~ , R , a ,  T , F , K } ) .  (8) 

Following the definition (1) of Y, the mapping x --+ x* 

7 For  s impl ic i ty ,  as in (6), Tu r i ng  mach i ne s  and  conf igura t ion  
mapp ings  will be ident i f ied.  
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is now ex tended  to a m a p p i n g  y ~ y* as follows: 

if y* ~ . . .  [ ] U K _ i [ _ 2 ] U K . . .  

( t ,  y )*  ~-" ' ' [DUK--~DUK " " ,  (9)  

(f,  Y)* ~ " ' 'DU~- - lC lUK' ' "  • 
Obvious ly ,  

M C ~ M ~  ~ ( ~ , [ h , R , a , T , F , K } )  

and  therefore  

M* C ~'* ~ ~l* C ~(o0", {x*, R*, c~*, T*, F*, K*} ). 

I t  is only  necessary  to p rove  t h a t  

~(~*, {X*, R*, a*, T*, F*, K*}) c ~(a, {h, R}).  

F i r s t ,  observe  t h a t  for eve ry  machine  Z* ~ ~(o0", { . . . } ) ,  

' ° ' (Z*)  ------ R " ( L Z * R ) L ,  

where  L ~ [XR]~X is the  ope ra t ion  of shif t ing the  head  
one square  to the  left, has  been p roved ;  therefore,  

~(~*, {...}) c 8(~, {...} U {x, R}). 

Secondly,  i t  can be easi ly  checked t h a t  

IX*, R*, T*, F*, K*  / c g ( a ,  {X, R / ) .  

I n  fact ,  

X* = XL, R* = R 2, T* = L 2, 

F* = Lh,  K *  = R ( h R ) R .  

According  to (4) ,  i t  has  been p roved  t h a t  

s(~*, {...}) c s(~, {~*, x, R}). 
Thi rd ly ,  

* 
~ ~(~, {x, R}). 

F r o m  formula  (2) and  the  convent ion  (9)  i t  mus t  follow 
t h a t :  

_~*[... ~ u ~ [ ~ u ~ . . . ]  . . . .  [ ~ u ~ c ~ u ~ [ ~ . . .  (10) 

a * [ . . . [ ~ u ~ u l ~ c . . . ]  . . . .  D u ~ u ~ c ~ c  . . .  (11) 

w h e r e u , , u ~  ~ { ~ , c ~ ,  . . . , c ~ }  and  c ~ { c ~ . . . , c ~ } .  
I n  order  to imp lemen t  a*, the  p r o g r a m  LSh [which 

meets  condi t ions  (10)] mus t  be merged  wi th  L h L  ~ [which 
meets  (11)]. A solut ion s can be wr i t t en  in the  form 

c~* -= L'~R~( X ) L ~ (  Y ) R  

which obvious ly  satisfies (10) .  The  p r o g r a m  ( X )  can  be 
chosen ma in ly  to copy the  symbol  c on the  first  free b l ank  
square ;  the  p r o g r a m  (Y) ,  to execute the  inverse  opera-  
t ion,  i.e., 

( X ) [ .  • • [~U~ClU~DC. . . ] . . . .  c u ~ u ~ c ~  . . . 

(Y)[. . .  c u ~ [ 2 u ~ c ~  . . . ] . . . .  ~ u ~ u ~ c ~ c .  . . 

s The authors are indebted to the referee for this solution, which 
is shorter and more elegant than theirs. 

I t  is not  difficult to tes t  t h a t  the  choice 

( X )  ~ ( r ' L ( X R ) X L ( ~ R ) L 2 X R 6 ) ,  

( Y )  -~ (r'RS~L4), 

where  r' ~ [XR] n, gives  t he  des i red  solution.  
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LETTERS--cont'd from page 323 

O n  0 a n d  O 

EDITOR: 
In reading the letter by Mr. Turner [On the Confusion Between 

"0" and "0",  Comm. ACM 9, 1 (Jan. 1966), 35], I notice that his 
redefinition of the ALGOL (identifier) fails to allow those such as 
"012ABC", which contain a digit immediately after the zero. I t  
seems that such a combination of characters will pose no major 
recognition problems, and should be allowed, providing only that  
it  contains a letter somewhere, other than the initial "0", which 
may logically be taken as a letter or a digit. 

I therefore offer an addition to Mr. Turner's redefinition: 

(identifier) ::= <letter>l<identifier>(letter>[<identifier>(digit> I 
0<identifier>] 0(unsigned integer>(letter) 

I personally have avoided most of the confusion between the 
two characters by attempting never to use either character in 
mnemonic symbols unless it has some mnemonic significance and 
it is difficult to take it to be the other. There are, however, some 
situations which are beyond the control of the programmer, but 
with which we are made to live; two of these are the FORTRAN 
internal functions, MAXOF and MINOF. For situations such as 
these, Mr. Turner's solution seems somewhat appropriate. 
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