
SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
008

PRECONDITIONING OF TRUNCATED-NEWTON METHODS*

STEPHEN G. NASHI"

Abstract. In this paper we discuss the use of truncated-Newton methods, a flexible class of iterative
methods, in the solution of large-scale unconstrained minimization problems. At each major iteration, the
Newton equations are approximately solved by an inner iterative algorithm. The performance of the inner
algorithm, and in addition the total method, can be greatly improved by the addition of preconditioning
and scaling strategies. Preconditionings can be developed using either the outer nonlinear algorithm or using
information computed during the inner iteration. Several preconditioning schemes are derived and tested.

Numerical tests show that a carefully chosen truncated-Newton method can perform well in comparison
with nonlinear conjugate-gradient-type algorithms. This is significant, since the two classes of methods have
comparable storage and operation counts, and they are the only practical methods for solving many large-scale
problems. In addition, with the Hessian matrix available, the truncated-Newton algorithm performs like
Newton’s method, usually considered the best general method for this problem.

Key words, unconstrained optimization, truncated-Newton algorithm, preconditioning strategies, linear
conjugate-gradient algorithm

1. Introduction. The problem of minimizing a real-valued function of n variables

(1) min F(x)

arises in many contexts and applications. For the purposes of this paper, we assume
that F is bounded and twice continuously differentiable. In particular, we are interested
in solving problems for which the number of variables is large, but where the gradient
of F is available.

The most effective general method for solving (1) is Newton’s method, which
takes full advantage of first- and second-derivative information about the function F.
In its modern, safe-guarded implementations, it provides a standard for measuring the
effectiveness of other algorithms. In Newton’s method, the direction of search p is
computed from the "Newton equations"

(2) G(k)p _g(k),

where g(k) and G(k) are, respectively, the gradient vector and Hessian matrix of second
derivatives of F evaluated at the current iterate xk). When the number of variables n
is large, solving (2) can be expensive and can require the storage of an n by n matrix,
which may be infeasible. Also, it is necessary to compute G(k) at every iteration. Even
for many small problems, this may be very costly. A large-scale problem will often
have a sparse Hessian matrix, i.e. the Hessian matrix will have few nonzero entries.
This allows Newton’s method to be extended to large-scale problems through the use
of finite-differencing and sparse-matrix techniques (Powell and Toint (1979)). However,
in many contexts (constrained optimization, probability density estimation, etc.) this
may not be possible.

Because the Newton equations are based on a Taylor series expansion near the
solution x* of the minimization problem (1), there is no guarantee that the search
direction they compute will be as crucial far away from x*. At the beginning of the
solution process, a reasonable approximation to the Newton direction may be almost

* Received by the editors November 30, 1982, and in final revised form March 9, 1984. This research
was supported by the National Science Foundation under grants MCS-7926009 and ENG77-06761, and by
a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada.

" Mathematical Sciences Department, Johns Hopkins University, Baltimore, Maryland 21218.

599

600 STEPHEN G. NASH

as effective as the Newton direction itself. It is only gradually, as the solution is
approached, that the Newton direction takes on more and more meaning.

These comments suggest that, for large-scale problems, it is sensible to use an
iterative method to approximately solve the Newton equations (2). Moreover, it should
be an iterative method with a variable tolerance, so that far away from the solution,
(2) is not solved to undue accuracy. Only when the solution is approached should we
consider expending enough effort to compute something like the exact Newton direc-
tion. As we approach the solution, the Hessian G(k) will converge to G(x*). Con-
sequently, by exploiting information from previous iterations, it is possible that a closer
approximation to the exact solution can be determined with no increase in effort.

We will refer to any method which uses an iterative algorithm to approximately
solve the Newton equations as a truncated-Newton method. Sherman (1978) suggested
using Successive-Over-Relaxation (SOR). This is the simplest of a whole class of
methods which have been found to be effective for solving linear systems which arise
in partial differential equations. However, it can be difficult to get SOR methods to
perform well on general problems. Also, they appear to be prohibitively expensive to
use in the context of truncated-Newton methods. The number of linear subiterations
required to achieve superlinear convergence increases exponentially at each nonlinear
iteration. (Notice that a truncated-Newton method is doubly iterative" there is an outer
"nonlinear" iteration to minimize the function F(x), and an inner "linear" iteration
to compute a search direction from the Newton equations (2).)

Various authors (Dembo and Steihaug (1983), Garg and Tapia (1980), O’Leary
(1982) have suggested using variants ofthe linear conjugate-gradient method. Although
it is ideal for problems where the coefficient matrix has only a few distinct eigenvalues,
it is guaranteed to converge (in exact arithmetic) in at most n iterations for any
positive-definite symmetric matrix. Thus, the type of exponential growth mentioned
above for SOR-type methods is impossible, at least theoretically.

A requirement ofthe linear conjugate-gradient method is that the coefficient matrix
must be positive definite. Unfortunately, the Hessian matrix is only guaranteed to be
positive semidefinite at the solution and may be indefinite elsewhere. Thus, whatever
iterative method is chosen to solve (2), it must be able to detect and cope with indefinite
systems. This is very closely related to the situation with Newton’s method.

The definition of the search direction given by (2) is only satisfactory if G(k) is
positive definite. An indefinite G(k) allows the possibility of p not being a descent
direction and this may result in convergence to a nonoptimal point. In the context of
minimization, it is preferable not to solve the system (2) if G(k) is indefinite. In this
case it is better to define p as the solution of a neighbouring positive definite system

((k)p _g(k), _I(k)’- G(k) + E.

A method for computing ((k) when matrix factorizations are feasible is to compute
the modified Cholesky factorization of G(k) (Gill and Murray (1974)). The idea of the
Gill-Murray algorithm is to increase the diagonal elements of G(k) during the factoriz-
ation so that the diagonal elements of the factorization are positive and the subdiagonal
elements are bounded. An important feature of the Gill-Murray algorithm is the ability
to detect that G(k) is not sufficiently positive definite and to compute a satisfactory
descent direction nevertheless.

A straightforward application of the linear conjugate-gradient method would not
have this property. Moreover, the linear conjugate-gradient algorithm is numerically
unstable when applied to an indefinite system. To overcome these difficulties, Nash
(1984) has derived a modified linear conjugate-gradient algorithm via the Lanczos

PRECONDITIONING OF TRUNCATED-NEVCI’ON METHODS 601

algorithm (hereafter referred to as the modified-Lanczos algorithm) which has many
of the properties of the Gill-Murray algorithm described above. If the matrix Gk) is
sufficiently positive definite, it is identical to the standard linear conjugate-gradient
algorithm. A brief description of the modified-Lanczos algorithm appears in 2.

Our main interestin this paper is the choice of a preconditioning strategy for a
truncated-Newton method. In such a method, we solve a sequence of linear systems
of the form (2), whose coefficient matrices Gk will converge to G(x*) as the solution
to the minimization problem is approached. Because of this convergence, it is possible
to take advantage of earlier computations to make subsequent linear systems easier to
solve, and hence to improve the efficiency of the overall algorithm. In large problems
where it is expensive to compute information, it is especially important to make as
much use as possible of every computed quantity. This is generally accomplished by
using current information to precondition future iterations.

Preconditioning is such a powerful and general idea that there exist preconditioned
versions of almost every known numerical algorithm, both direct and iterative. Direct
algorithms often use preconditioning to reduce the error in the computed solution.
One common example of this is the use of column scaling in Gaussian elimination
(see, for example, Wilkinson (1965, Chap. IV)). Iterative methods generally use
preconditioning to accelerate convergence, although they may also be concerned with
the condition of the problem. One of the best known and best understood examples
of this is the generalized (i.e. preconditioned) linear conjugate-gradient algorithm of
Concus, Golub and O’Leary (1976).

To conclude this section, we give here a description of a truncated-Newton method
in algorithmic form. The details of the methods used to iteratively solve the Newton
equations and to precondition the algorithm will be given later.

TRUNCATED-NEWTON ALGORITHM.
TN0. Given x), some initial approximation to x*. Set k 0.
TN1. If xk) is a sufficiently accurate approximation to the minimizer of F,

terminate the algorithm.
TN2. Approximately solve the Newton equations (2) using some iterative

algorithm with preconditioning M(k)= G(k). (See 2 and 3.)
TN3. With the search direction p computed in step TN2, find a > 0 such that

F(x(k) + ap) < F(x(k)). (Line search; see below.)
TN4. Set x(k+l)---x(k)-l-otp, k=k+ 1. Go to step TN1.

For the purposes of this paper, we will assume that a modified-Lanczos algorithm
(see below) will be used in Step TN2 to approximately solve the Newton equations.
In step TN3, the line search, F(x) must be "sufficiently decreased" in order to guarantee
convergence to a local minimum. One approach is to ensure that the search direction
p is a descent direction (pTg(k)<o), that [g(x(k)+ap)’p[<----rtpT"g(k) with 0--<_r/< 1,
and that F(x(k)) F(x(k)q otp) >-- --tzpTg(k) where 0</x _--<1/2,/z < r/. By choosing/z small
(say 10-4), almost any a that satisfies the first condition will also satisfy the second.
The step-length a can be computed using safeguarded polynomial interpolation (Gill
and Murray (1979)).

2. The modified-Lanczos method. The general form of the modified-Lanczos
algorithm is outlined below. If the Hessian matrix G is positive definite, this method
is equivalent to the linear conjugate-gradient algorithm of Hestenes and Stiefel (1952).
For more complete details, refer to Nash (1984).

602 STEPHEN G. NASH

Assume temporarily that G is positive definite. Recall that we are iteratively solving

(3) Gp -g.

We use the Lanczos algorithm (Lanczos (1950)) to compute a tridiagonal matrix that
is an orthogonal projection of G. At stage q of the algorithm"

T(4) Vq GVq- Tq, Vq Vq I,

where Vq is an n by q orthogonal matrix, and Tq is a q by q tridiagonal matrix. The
tridiagonal matrix To is factored into its Cholesky factors"

Tq LDqL,
where Dq is diagonal with positive diagonal entries, and Lq is lower bidiagonal with
ones on the main diagonal (this factorization is only possible if Tq is positive definite).
This factorization is then used to compute pq (the qth approximation to the solution
of (3)).

Tqyq LqDqL yq -(- Vg), pq Vqyq.

(Paige and Saunders (1975) have derived iterative formulas for pq based on this
derivation.) At each inner iteration q, the direction pq is tested to see if it "adequately"
solves the Newton equations (3); if so, the inner iteration is truncated, and the search
direction p is defined as pq (see 4 for details). The sequence of iterates pq is the same
as that generated by the linear conjugate-gradient algorithm, ifwe choose Vt (g/[[gi[2)-

The linear conjugate-gradient algorithm can only be safely used when G is positive
definite, whereas the Lanczos algorithm only requires that G be symmetric. The above
derivation will enable us to adapt the linear conjugate-gradient algorithm to indefinite
systems, as we now indicate.

If g contains a component of the negative eigenspace of G, then indefiniteness
in G will ultimately show up in Tq (for q n, (4) defines an orthogonal similarity
transformation). In fact, due to the properties of the Lanczos algorithm, it will show
up fairly early (Parlett (1980)). O’Leary (1982) has suggested applying the modified-
Cholesky factorization of Gill and Murray (1974) to Tq in this case. However, this
factorization requires information about the complete matrix T, in order to ensure
stability, information not available to this iterative algorithm.

Because Tq is iteratively generated, and Tq_t is a principal submatrix of Tq, it is
possible to determine exactly the stage q at which Tq becomes indefinite. If this occurs,
Nash (1984) suggests boosting the diagonal elements of the lower 2 x 2 diagonal block
so that the resulting matrix Tq is positive definite. Because only this 2 x 2 is modified,
the iterative nature and the low storage requirements are unchanged. In addition, the
size of any diagonal modification is bounded by 3(6 + ,)tq -[- q) where yq and q are the
largest (in absolute value) diagonal and off-diagonal elements of To, and 6 is a tolerance
for zero (used to bound Tq away from singularity).

2.1. Properties of the search direction. Even ifthe Hessian is indefinite, the approxi-
mate solutions pq of the Newton equations will be descent directions for the minimiz-
ation algorithm, i.e. pg < 0 for q > 0. If lPq denotes the (possibly modified) tridiagonal
matrix computed above, then

gTpq -grVq, Vrq g < 0

if Vrqg # O, since q is positive definite by construction. Since)1, the first column of
Vq, will be chosen as a nonzero multiple of M-lg for some positive definite matrix
M, Vg will be nonzero, and hence pq will be a descent direction as desired.

PRECONDITIONING OF TRUNCATED-NEW’FON METHODS 603

Although necessary to guarantee the convergence of the algorithm, the fact that
p is a descent direction is not enough to ensure that it is an effective search direction.
It should also be well-scaled, i.e. a unit step along p should approximate the minimum
of the function in that direction. Near x*, this will be true for Newton’s method, but
cannot be guaranteed for nonlinear conjugate-gradient methods. However, regardless
of how many modified-Lanczos iterations are used to compute the search direction p,
a truncated-Newton method will generally give a well-scaled search direction, in the
sense described below.

If the line-search procedure described in is used, the primary test (for an
approximate minimum along the direction p) is Ig(x + ap)Tpl <= _qgrp, where 0<_-- r/< 1.
Assuming that VGV, is positive definite, setting a (in the hope of a well-scaled
direction), and using a Taylor series expansion, we obtain

pg(x +pq) -gTVq(VTq GVq)-1 VTq g
/ gTV(VqGV)-’(VrGV) VffGVq)-’ Vg/ O(llg)

o(llgll’).
This final expression, representing the cubic remainder term in the Taylor series, will
be small when x(k is near to x*, or when F(x) is approximated well by a quadratic
function. In these cases, we can expect that the search direction from the truncated-
Newton method will be well-scaled, even after only one inner iteration. (See also
Dembo and Steihaug (1983).)

2.2. Preconditioning. If a matrix M is available such that M -G, then the
modified-Lanczos algorithm can take advantage of this information. The algorithm is
applied (implicitly) to the equivalent system of linear equations

M-/2GM-/2)M1/2p M-/2g.

The number of iterations required to solve this transformed system is equal to the
number of distinct eigenvalues of M- G. In addition, ignoring this finite-termination
property, the algorithm converges linearly with rate (K1/2--1)/(K/2+ 1), where K is
the condition number of M-G in the 2-norm. We aim to choose M so that K(M- G)
is small, and so that M-G has fewer distinct eigenvalues than G, thus making the
system of equations easier to solve. In practice, the matrix M-/2 is not formed; all
that is required is that a system of equations of the form

My c

be solved at each step. For details of these results, see Concus, Golub and O’Leary
(1976).

2.3. Matrix/vector products. At each iteration, the Lanczos algorithm requires the
computation of a matrix/vector product Gv involving the Hessian matrix G. However,
the matrix G is not required explicitly. If G is explicitly available, these matrix/vector
products can be formed directly. If G is sparse, a finite-difference approximation to
G could be formed and used to compute them (see Thapa (1980)). Otherwise, Gv
could be approximated by finite-differencing along the gradient g"

g(x+hv)-g(x)
O(x)v

h

for some suitably chosen small value of h (see, for example, Gill and Murray (1974),
O’Leary (1982)).

604 STEPHEN G. NASH

3. Preconditioning strategies. With truncated-Newton methods, there are two prin-
cipal ways in which a preconditioning strategy can be selected. A basic preconditioning
might be chosen using the formulas for some low-memory nonlinear algorithm; this
is the subject of 3.1. Secondly, this nonlinear algorithm might be further precondi-
tioned by some scaling of the variables. This is the subject of 3.2. In either case, our
goal is to develop a preconditioning operator dynamically, as the problem is being
solved, and not to rely on a priori information.

3.1. Preconditioning based on a nonlinear algorithm. A truncated-Newton
algorithm operates by using some iterative algorithm to approximately solve a sequence
of equations of the form

G(k)p _g(k).

As the solution is approached, it might be hoped that information gained solving
equation (k) might assist in solving equation (k+ 1). This information is generally
used by forming, either explicitly or implicitly, a matrix M-G(k/). The better M
approximates G(k+l), the better the preconditioning strategy will be (see 2.2). In
order to use M within the modified-Lanczos algorithm, M must be positive definite,
and linear systems involving M should be "easy" to solve. For example, the matrix
M might be diagonal or in factored form.

It is possible to design preconditioning strategies by exploiting ideas from other
minimization methods. Most nonlinear optimization algorithms can be viewed as
computing a search direction by solving, possibly implicitly, a system of linear equations

np-- -g
with some operator B, where B is an approximation to the Hessian G. By applying
the formulas for the nonlinear method to any vector (instead of -g), we implicitly
define a preconditioning matrix M.

The optimal choice would be M Gk/) (Newton’s method) since the inner
iteration would then converge instantly; however, the costs in storage and computation
would be prohibitive. Setting M =/, i.e. using an unpreconditioned algorithm, corre-
sponds to preconditioning with the steepest-descent operator; this is simple to use,
but not particularly effective. As a compromise, Nash (1984) has suggested using the
operator from a limited-memory quasi-Newton method, which is inexpensive to use,
and yet still effective at improving the performance of the inner algorithm.

The class of limited-money quasi-Newton methods (see Gill and Murray (1979))
define the search direction as a linear combination of the gradient vector and a subset
of the previous search directions. They generalize nonlinear conjugate-gradient
algorithms, and are suitable for problems in which the Hessian cannot be stored.

These methods derive their name from the class of quasi-Newton methods for
unconstrained optimization. The direction of search for a quasi-Newton method can
be defined as

p --Hkgk,
where Hk is an n n matrix which is stored explicitly and is an approximation to the
inverse Hessian matrix. After computing the change in x, Sk xk/)--Xk) and the
corresponding change in the gradient vector, Yk gCk+l)_ gk), the approximate Hessian
is updated to include the new curvature information obtained during the k-th iteration.
For example, the BFGS formula for Hk/l is given by

Sk HkYk)S + Sk Sk HkYk) 7"
Sk HkYk) rYk r(5) Hk+l Hk + ySk (ySk)2 SkSk

PRECONDITIONING OF TRUNCATED-NEVCTON METHODS 605

(see Dennis and Mor6 (1977)). If exact linear searches are made and F is a positive-
definite quadratic function, the matrix Hk+ satisfies the so-called quasi-Newton condi-
tion for k pairs of vectors {sj, yj}, i.e.,

s Hk+ y, j 1, 2,’’’, k.

In this case, if the Hessian of F is G, then Gs =y and consequently

Sj= HGs,

and the matrix HG has k unit eigenvalues with eigenvectors {s}.
Limited-memory quasi-Newton methods define the direction of search as --Hgk);

the matrix H is never stored explicitly; rather, only the vectors {s, y} that define the
rank-one corrections are retained (see Shanno (1978), Gill and Murray (1979), and
Nocedal (1980)).

Different methods can be developed by varying the number of vectors {sj, y}
stored and the choice of quasi-Newton updating formula. For example, if we define
the matrix H to be the identity matrix updated by one iteration of the BFGS formula
(5), and if exact line searches are performed, the algorithm will be equivalent to the
Fletcher-Reeves nonlinear conjugate-gradient method.

When no preconditioning is used, the first linear iterate will be a multiple of the
steepest-descent direction, which is often a poor approximation to the Newton direction.
Preconditioning with an effective nonlinear algorithm offers the hope that the first
iterate will approximate the Newton direction quite well, and that an adequate search
direction can be computed using only a few inner iterations.

3.2. Diagonal scaling of the variables. Nonlinear minimization algorithms have
been found to work more efficiently if the variables are properly scaled. In part, this
means that a unit step along the search direction will approximate the minimizer of
the function in that direction. It also implies that the tolerances for the algorithm have
the correct scaling; this is a factor even for the more scale-invariant algorithms such
as Newton’s method. One way of achieving this is through a diagonal scaling matrix.
In this context, the inverse of this diagonal matrix will be used as the initial approxima-
tion to the matrix H of 3.1.

There is some theoretical evidence to indicate that, among diagonal scalings, the
most effective strategy will be to approximate the diagonal of the Hessian. Forsythe
and Straus (1955) have shown that if the Hessian matrix G is two-cyclic, then the
diagonal of G is the optimal diagonal preconditioning. This assumption is valid for
many problems arising in partial differential equations. Also, in the general case, van
der Sluis (1969) has proven that preconditioning with the diagonal of G will be nearly
optimal, in the sense that the condition number (in the 2-norm) of G preconditioned
by its diagonal will be at most n times as large as the condition number of the optimally
diagonally preconditioned G. Thus, estimating the diagonal of G should be effective
for all problems.

The sample scaling strategies derived here will be based on quasi-Newton approxi-
mations to the diagonal of the Hessian matrix. It is possible to use the direct form of
the BFGS formula (5) to approximate the diagonal of G. Here we approximate G by
a sequence of matrices Bq, rather than approximating G- by matrices H.

Because the linear conjugate-gradient algorithm is equivalent to the BFGS
algorithm (when applied to the same quadratic objective function with Bo I), it is
possible to show that B,- G, if G is positive definite and if the iteration does not
terminate prematurely (see Nazareth (1979)). Thus, if we were able to update only the

606 STEPHEN G. NASH

diagonals of B, at the end of n steps we would have the exact values for the diagonal
elements of G.

To develop this diagonal update, we will ignore the nonlinear algorithm for the
moment, and concentrate our attention on one instance of the linear conjugate-gradient
method. We are attempting to minimize the quadratic function

dp(p)=1/2pGp+prc

and hence

g(p) Vb(p)= Gp+ c= -r(p),

where r(p) is the residual at p. The linear conjugate-gradient algorithm is initialized
with Po O, and at the qth iteration, the next estimate of the solution is computed as

pq+ pq + aqUq,

where u. is the search direction and a. is the step-length.
The BFGS algorithm computes the (same) search direction using the formula

(6) nqUq --gq,

where gq =- g(pq). Ifan exact line-search is used, the step-length for the BFGS algorithm
is that same as that for the linear conjugate-gradient algorithm. Under the assumptions
that Po 0, Bo- I, and that the new approximate Hessian Bq/ is computed using the
direct form of the BFGS formula (5)

(7) Bq+,-- Bq sTBqsq(Bqsq)(Bqsq) +_’-f-TYoY,
yqSq

both algorithms compute the same estimates of the solution at every stage.
It is possible to adapt (7) so that only the diagonal ofthe update need be computed.

Using (6) and

we can conclude that

(8)

The other important fact is

(9)

sq pq+ pq OlqUq,

Ol.qgq.

Yq gq+l--g aqGuo.

If we incorporate (8) and (9) in (7), we obtain

(10) Bq+,- Bq-uVqrq rqrq +(Guq)(Guq)u(Gu.)

(These quantities are all computed within the conjugate-gradient, algorithm.) Using
(10), any individual element of B, can be individually updated. However, when used
to compute a scaling matrix, only the diagonal of Bq will be formed.

When the linear conjugate-gradient algorithm is used in its standard form, (10)
is quite adequate. However, using instead the preconditioned modified-Lanczos
algorithm (see 2) creates two further problems. First, in practice, a new scaling matrix
will be generated using an iteration preconditioned by some operator M. In this case,
the BFGS algorithm should be initialized with Bo M. To see this, replace G by
M-I/2GM-I/2 in the above derivation.

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 607

A second problem arises because the linear conjugate-gradient algorithm is
implicitly implemented using the modified-Lanczos algorithm" only constant multiples
of the search direction Uq and the residual rq are computed. These multiplicative factors
do not affect the final term in (10), since the factors enter equally into the numerator
and the denominator. The other rank-one matrix is affected. However, the true residual
can be computed using rq Olqq, where q is the unnormalized current Lanczos vector

7-rq. Using the recurrence relation(Parlett (1980)). This leaves only the inner product Uq
for the search direction Uq, and the fact that the residuals are M-orthogonal, it can be
shown that

7" rM-i 2 "T --1
U q rq rq a q vq M Vq.

Note that M-q is computed within the modified-Lanczos algorithm.
Because the Hessian matrix is not always positive definite, the modified-Lanczos

algorithm alters the subproblem it is solving when it runs across evidence of indefinite-
ness. The preconditioning scheme is trying to approximate the diagonal of the actual
Hessian matrix, and the preconditioning algorithm described above has the property
of hereditary positive definiteness, so there is some question as to what should be done
when the Hessian matrix is modified. We have chosen to omit the diagonal update
whenever the matrix goes indefinite, in order to ensure that Bq remains positive definite.

Using (10) it is possible to compute any number of subdiagonals in addition to
the main diagonal. Because this extension is so straightforward, the details will be
omitted here.

An additional possibility is to use exact information about the diagonal of the
Hessian either to precondition the linear algorithm or to initialize the linear precon-
ditioning. Note, however, that even if matrix-vector products of the form Gv can be
found, it may be inconvenient to compute G,. Also, away from the solution of the
minimization problem, the matrix G may be indefinite, so that the diagonal of the
Hessian may not define a positive definite preconditioning matrix. In that case, some
rule for modifying negative diagonal elements would have to be derived.

4. Numerical results. In this section we compare the numerical behavior of threee
truncated-Newton algorithms with that of other methods. The methods tested are:

1. Algorithm PLMA--A two-step BFGS limited-memory quasi-Newton method
with a simple diagonal scaling. PLMA is the most successful nonlinear conju-
gate-gradient-type method tested in the survey of Gill and Murray (1979).

2. Algorithm MNA--A modified Newton method using first and second deriva-
tives (Gill and Murray (1974)).

3. Algorithm QNMmA quasi-Newton method using the full n by n BFGS update
of the approximate Hessian matrix (Gill and Murray (1972)).

4. Algorithm TNmA truncated-Newton algorithm, implemented via the modified-
Lanczos algorithm, and preconditioned with PLMA with the simple diagonal
scaling replaced by the diagonal of (10).

5. Algorithm BTN--A (basic) truncated-Newton algorithm, implemented via the
linear conjugate-gradient algorithm, and with no preconditioning strategy.

6. Algorithm PBTNnAlgorithm BTN, but preconditioned using the diagonal of
(10).

Eighteen problems are considered. Of these, 11 problems are of dimension 50 or

less, and 7 problems are of dimension 100. The test examples may be separated into
two classes. The first class contains problems whose Hessian matrix at the solution
has clustered eigenvalues; the second contains problems whose Hessian matrix has an

arbitrary eigenvalue distribution.

608 STEPHEN G. NASH

Example 1. Pen (Gill, Murray and Pitfield (1972)).

F(x) a (xi 1): + b x,
i=1 i=1

The solution varies with n, but xi xi+, 1,. , n- 1. All the runs were made with
a 1, b 10-3. With these values, the Hessian matrix at the solution has n- eigen-
values O(1) and one eigenvalue O(10-3). The Hessian matrix is full and consequently,
for large values of n, conjugate-gradient type methods are the only techniques available.

Example 2. Pen 2 (Gill, Murray and Pitfield (1972)).

F(x) a ((eX,/+ e’,-,/’-ci):Z+(e’,/-e-/l)2)
i=2

+b (n-i+l)x-I + x-
i=1

where c e/+ e-)/1 for 2, , n. The solution varies with n, but x x+ for
i= 1,. ., n- 1. This example was also run With a and b 10-3. For these values
the Hessian matrix at the solution has n-2 eigenvalues O(1) and two eigenvalues
O(10-3). The Hessian matrix is full.

Example 3. Pen 3 (Gill, Murray and Pitfield (1972)).

F(x)=a l+e 2 (x+2x++lOx+-l)
i=1

+ (x+2xi++lOxi+-l) (2xi + xi+ 3
i=1 i=1

+ e-, (x +x+- 3)
il

+ (x- n + 2 (x-.
i=1 i=1

At the minimum, this function has n/2 eigenvalues O(1) and n/2 eigenvalues O(10-).
The Hessian matrix is full.

The remaining examples have arbitrary distributions of eigenvalues at the solution.
xample 4. Chebyquad (Fletcher (1965)).

F(x)= f,(x),
i=l

where

f(x) T* (x) dx-- T* (x;), i= 1,..., n,
nj=l

and T*(x) is the ith-order shifted Chebyshev polynomial. The Hessian matrix is full.
Example 5. GenRose. This function is a generalization of the well-known two-

dimensional Rosenbrock function (Rosenbrock (1960)). For n > 2,

F(x) 1+ . (100(x, 2 2-x,_,) +(+x,)).
i=2

Our implementation of this function differs from most others in that F(x) is unity at
the solution rather than zero. This modification ensures that the function cannot be

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 609

computed with unusually high accuracy at the solution and is therefore more typical
of practical problems.

The next three examples arise from the discretization of problems in the calculus
of variations. Similar problems arise in the numerical solution of optimal control
problems. The general continuous problem is to find the minimum of the functional

J(x(t)) f(t, x(t), x’(t)) dt,

over the set of piecewise ditterentiable curves with the boundary conditions x(0) a,
x(1) b. If x(t) is expressed as a linear sum of functions that span the space of
piecewise cubic polynomials then minimization of J becomes a finite-dimensional
problem with a block tridiagonal Hessian matrix. The piecewise polynomials are
assumed to be in C , and equally spaced knots are used.

Example 6. Cal (Gill and Murray (1973)).

Io’J(x(t))= {x(t +x’(t)tan-x’(t)-log(l+x’(t))/}dt,

with the boundary conditions x(0)= 1, x(1)= 2.
Example 7. Cal 2 (Gill and Murray (1973)).

J(x(= {00(x(-x l+(-x’(la,

with the boundary conditions x(0)= x(1)= 0.
xample 8. Cal 3 (Gill and Murray (1973)).

J(x(t)) {e-(’(x’(t 1)} dr,

with the boundary conditions x(0)= l, x(1)= 0.
Nxample 9. QOR (Toint (1978)).

50 33((x=2,x+2 a- 2 x+ 2 x
i=1 jeA(i) jeB(i)

where the constants , , d and sets A(i) and B(i) are described in Toint’s paper.
This function is convex with a sparse Hessian matrix.

Example 10. GOR (Toint (1978)).
50 33

(x= 2 c,(x,+ b(yl,
i=1 i=1

where

and

aixi 1Oge (1 + Xi),
c(x)

-ax log (1 + x),

y,=di- xj+ xj
jA(i) jB(i)

xi >-_0,

Xi <0,

fl,y2 Ioge y,), y, --> 0,
b,(y,) [fl,y, y, < O.

The constants a, fl, d and sets A(i) and B(i) are defined as in Example 9. This
function is convex but there are discontinuities in the second derivatives.

610 STEPHEN G. NASH

Example 11. ChnRose (Toint (1978)).
25

F(x) + (4ai(Xi-l- x,2")2 + (1 x,)2),
i=2

where the constants ai are those used in Example 9. The value of F(x) at the solution
has been modified as in Example 5. The Hessian matrix is tridiagonal.

The starting points used were the following:
Start x)=(0,0,...,0).
Start2 x()=(2 n)

r

n+l’n+l’ ’n+l
Start3 x)= (1, -1,1, -1, .)r
Start4 x)=(-1,-1,...,-1)r

4.1. Details of the algorithms. All the routines are coded in double precision
FORTRAN IV. The run were made on an IBM 370/168, for which the relative machine
precision e is approximately l0-15.

The truncated-Newton routines require the computation of matrix/vector products
of the form G(k)t. For routine TN with Examples 5-11, sparse finite-differencing
techniques (Thapa (1980)) were used to approximate G(k) at the beginning of each
major iteration, and this approximation was used to compute the matrix/vector prod-
ucts. The difference parameter used here was el/2, where e is the machine precision.
Elsewhere, the matrix/vector products were computed by differencing the gradient
along the vector v (2.3). Because our interest is in methods that do not require second
derivatives, tests were not made using exact second-derivative information.

For all truncated-Newton algorithms, a fairly stringent criterion was used to
terminate the modified-Lanczos iterations. Following Dembo and Steihaug (1983), the
modified Lanczos iterations are terminated after n/2 iterations, or if

where rq is the qth residual of the linear system This criterion forces the algorithm to
behave like a conjugate-gradient algorithm near the beginning of the iteration and like
Newton’s method near the solution. We stress, however, that when second derivatives
are not available, or the cost of the matrix/vector product G(k)v is high, a criterion
must be used that always leads to a small number of linear iterations. Because the
computation of the search direction can be degraded by loss of orthogonality, at most
n/2 modified Lanczos iterations were allowed at each major step.

Each problem was solved using three values of r/, the step-length accuracy (see
1); these values were 0.25, 0.1, and 0.001. Each algorithm requires two additional

user-specified parameters. The first (A) limits the change in x at each iteration (the
quantity [IX(k+l)- x(k)[[2). The value of A was set at 10 for all problems to avoid overflow
during the computation of the objective function. The second parameter is an estimate
of the value of the objective function at the solution and is used to compute the initial
step for the step-length algorithm. In each case, this parameter was set to the value of
F(x) at the solution.

The results are contained in Tables 1-3. Each table entry refers to the iteration
at which

where x* is the solution
Fk)-F(x*)< 10-5(1 +IF(x*)]),

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 611

612 STEPHEN G. NASH

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 613

<
Z

614 STEPHEN G. NASH

4.2. Discussion of results. With the exception of the results for TN, each entry is
a pair of numbers" the first is the number of major iterations; the second is the number
of function/gradient evaluations required to solve the problem (for BTN and PBTN,
this reflects both the line search and the matrix/vector products). For TN, more detailed
results are given. The first pair of numbers gives the total number of iterations, and
the number of function/gradient evaluations used in the line search. The finite-
difference column records the number of gradient evaluations used to compute the
matrix/vector products. The next column is the total number of modified Lanczos
iterations (each iteration will normally be dominated by the cost of the matrix/vector
product, comparable to a gradient evaluation). The final column combines the line-
search cost with the inner-iteration cost to give a measure of the total cost of the
minimization; two totals are given" the first combines the line-search costs with
finite-differencing costs, and the second with the inner-iteration costs.

We first compare the truncated-Newton algorithms among themselves. It is clear
that Algorithm TN is superior to the other two. This is not surprising due to the more
elaborate preconditioning strategies that it uses. Based on the total number of iterations
required, TN is only marginally better than the other two routines. But based on the
number of function/gradient evaluations, there is a clear difference. Even without
taking advantage of sparsity, PBTN is 36% slower than TN, and BTN is over three
times as slow. A comparison of PBTN with BTN indicates the improvement even
simple preconditioning strategies can make to a truncated-Newton algorithm. The two
routines are identical, except that PBTN has a diagonal scaling as a preconditioner.
This addition is inexpensive (three extra vectors are needed), but offers a better than
50% improvement in performance (based on the total number of function/gradient
evaluations).

To compare truncated-Newton algorithms with other methods, we will use the
results for Algorithm TN. In the following, results for the Newton algorithm MNA
and the quasi-Newton method QNM are only available for the smaller functions
(n-_< 50). Tests with the larger functions (n- 100) were not made due to the storage
and computational costs. The total number of function/gradient evaluations (Table 3)
will be the primary factor for comparison.

A comparison of TN with the limited-memory quasi-Newton algorithm PLMA
shows that TN is 50% better if sparsity of the Hessian is taken into account, and 20%
better otherwise (i.e., if each Lanczos iteration requires a gradient evaluation to
approximate the matrix/vector product). This comparison is important, since these
two classes of methods have comparable storage and operation counts, and they are
the only practical methods for solving many large-scale problems.

A comparison of TN with the quasi-Newton method QNM on the smaller test
functions indicates that TN is 50% better if sparsity is exploited, and 30% better
otherwise. QNM, unlike TN, requires matrix manipulation, and hence has higher
storage and operation counts than TN. Both algorithms only require first derivative
information.

A comparison of TN with the modified Newton method MNA, again on the
smaller test functions, shows that MNA is 30%-50% better than TN, depending on
whether sparsity is exploited. However, MNA computes, stores and factors the Hessian
matrix, and this is not reflected in the scores for MNA. For this reason, a further
comparison is suggested, using the "TN" rather than the "totals" column in Table 3.
The "TN" column does not reflect the cost of the matrix/vector products, i.e., the
"second-derivative costs" of the truncated-Newton algorithm. From this point of view,
TN is twice as efficient as MNA. This is surprising, since the truncated-Newton method

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 615

is a compromise on Newton’s method designed to enable the solution of large-scale
problems.

The results of comparisons for individual functions are not always so remarkable.
For many of the functions in Table 2, the Hessian has clustered eigenvalues. All of
these problems tend to be easy to solve, and there are few striking differences in
performance. The remaining problems (Table 1) have more arbitrary eigenvalue distri-
butions, and are considerably harder to solve. Here, the simple truncated-Newton
Algorithm BTN has particular difficulties (Cal 1, n 50, 100). Even Newton’s method
(MNA) appears to struggle with some functions (GenRose, n 50); and performs
worse that any other routine in one case (Chebyquad, n 20). For these two functions,
the Hessian is frequently indefinite, suggesting that complete modified factorizations
are not always an effective treatment for nonconvex functions.

Acknowledgments. The author would like to thank his thesis advisors Philip Gill,
Gene Golub, and Walter Murray for their many helpful suggestions. Also, thanks to
Mukund Thapa for kindly providing the subroutines for computing the sparse Hessian
matrices of the test examples.

BIBLIOGRAPHY

1] P. CONCUS, G. GOLUB AND D. P. O’LEARY, A generalized conjugate-gradient methodfor the numerical
solution of elliptic partial differential equations, in Sparse Matrix Computations, J. Bunch and
D. Rose, eds., Academic Press, New York, 1976, pp. 309-332.

[2] R. S. DEMaO AND T. STEIHAUG, Truncated-Newton algorithms for large-scale unconstrained optimiz-
ation, Math. Prog., 26 (1983), pp. 190-212.

[3] J. E. DENNIS AND J. J. MORI, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977),
pp. 46-89.

[4] R. FLETCHER, Function minimization without evaluating derivativesma review, Comput. J., 8 (1965),
pp. 33-41.

[5] G. E. FORSYTHE AND E. G. STRAUS, On best conditioned matrices, Proc. Amer. Math. Soc., 6 (1965),
pp. 340-345.

[6] N. K. GARG AND R. A. TAPIA, QDN: A variable storage algorithm for unconstrained optimization,
Department of Mathematical Sciences Report, Rice Univ., Houston, 1980.

[7] P. E. GILL AND W. MURRAY, Quasi-Newton methods for unconstrained optimization, J. Inst. Maths.

Applics., 9 (1972), pp. 91 108.
[8], The numerical solution of a problem in the calculus of variations, in Recent Mathematical

Developments in Control, D. J. Bell, ed., Academic Press, New York, 1973, pp. 97-122.

[9], Newton-type methods of unconstrained and linearly constrained optimization, Math. Prog., 17
(1974), pp. 311-350.

0], Conjugate-gradient methodsfor large-scale nonlinear optimization, Report SOL 79-15, Operations
Research Dept., Stanford Univ., Stanford, CA, 1979.

[l l] P. E. GILL, W. MURRAY AND R. A. PITFIELD, The implementation of two revised quasi-Newton
algorithmsfor unconstrained optimization, Report NAC l, National Physical Laboratory, England,
1972.

12] M. HESTENES AND E. STIEFEL, Methods ofconjugate-gradients for solving linear systems, J. Res. NBS,
49 (1952), pp. 409-436.

[13] C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators, J. Res. NBS, 45 (1950), pp. 255-282.

[14] S. G. NASH, Newton-type minimization via the Lanczos algorithm, SIAM J. Numer. Anal., 21 (1984),
pp. 770-778.

[15] L. NAZARETH, A relationship between the BFGS and conjugate-gradient algorithms and its implications

for new algorithms, SIAM J. Numer. Anal., 16 (1979), pp. 794-800.
16] D. P. O’LEARY, A discrete Newton algorithm for minimizing a function of many variables, Math. Prog.,

23 (1983), pp. 20-33.
17] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM J.

Numer. Anal., 12 (1975), pp. 617-629.
[18] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.

616 STEPHEN G. NASH

[19] M.J.D. POWELL AND P. L. TOINT, On the estimation ofsparse Hessian matrices, SIAM J. Numer.
Anal., 16 (1979), pp. 1060-1074.

[20] H. H. ROSENBROCK, An automatic methodforfinding the greatest or least value ofa function, Comput.
J., 3 (1960), pp. 175-184.

[21] D. F. SHANNO, Conjugate gradient methods with inexact searches, Math. Oper. Res., 3 (1978), pp.
244-256.

[22] A. H. SHERMAN, On Newton-iterative methods for the solution ofsystems of nonlinear equations, SIAM
J. Numer. Anal., 15 (1978), pp. 755-771.

[23] M. THAPA, Optimization of unconstrained functions with sparse Hessian matrices, Ph.D. thesis, Dept.
Operations Research, Stanford Univ., Stanford, CA, 1980.

[24] P. U TOINT, Some numerical results using a sparse matrix updatingformula in unconstrained optimization,
Math. Comp., 32 (1978), pp. 839-851.

[25] A. VAN DER SLUIS, Condition numbers and equilibration ofmatrices, Numer. Math., 14 (1979), pp. 14-23.
[26] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford Univ. Press, London, 1965.

