[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["필요한 정보가 없음","missingTheInformationINeed","thumb-down"],["너무 복잡함/단계 수가 너무 많음","tooComplicatedTooManySteps","thumb-down"],["오래됨","outOfDate","thumb-down"],["번역 문제","translationIssue","thumb-down"],["샘플/코드 문제","samplesCodeIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2024-07-26(UTC)"],[[["This course provides a comprehensive overview of recommendation systems and their various models, including matrix factorization and deep neural networks."],["Learners will gain an understanding of the key components of recommendation systems, such as candidate generation, scoring, and re-ranking, as well as the use of embeddings."],["The course requires prior knowledge of machine learning concepts and familiarity with linear algebra."],["Upon completion, learners should be able to describe the purpose of recommendation systems and develop a deeper understanding of common techniques used in candidate generation."],["The estimated time commitment for this course is approximately 4 hours."]]],[]]