- Bump image for Structured Data pipelines.
- Add max_wait_duration to v1 GCPC custom job components/utils
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Remove default prediction column names in
v1.model_evaluation.regression_component
component to fix pipeline errors when using bigquery data source. - Add reservation_affinition support in
v1.create_custom_training_job_from_component
. - Deprecate
preview.custom_job
module. - Fix default location in
v1.create_custom_training_job_from_component
. - Update Docker image.
- Bump supported KFP versions to
kfp>=2.6.0,<2.11.0
. - Support Python versions 3.12 and 3.13.
- Bump image for Structured Data pipelines.
- Add strategy to v1 GCPC custom job components/utils
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Fix Gemini batch prediction support to
v1.model_evaluation.autosxs_pipeline
after output schema change. - Modify the code to support latest bp result format
- Update the StarryNet package metadata.
- Use instance.target_field_name format for text-bison models only, use target_field_name for gemini models.
- Pass model name to eval_runner to process batch prediction's output as per the output schema of model used.
- Use LLM Model Evaluation image version v0.7
- Update AutoSxS and RLHF image tags
- Fix to model batch explanation component for Structured Data pipelines; image bump.
- Add dynamic support for boot_disk_type, boot_disk_size in
preview.custom_job.utils.create_custom_training_job_from_component
. - Remove preflight validations temporarily.
- Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Updated the Starry Net pipeline's template gallery description, and added dataprep_nan_threshold and dataprep_zero_threshold args to the Starry Net pipeline.
- Fix bug in Starry Net's upload decomposition plot step due to protobuf upgrade, by pinning protobuf library to 3.20.*.
- Bump Starry Net image tags.
- In the Starry-Net pipeline, enforce that TF Record generation always runs before test set generation to speed up pipelines runs.
- Add support for running tasks on a
PersistentResource
(see CustomJobSpec) viapersistent_resource_id
parameter onv1.custom_job.CustomTrainingJobOp
andv1.custom_job.create_custom_training_job_from_component
- Bump image for Structured Data pipelines.
- Add check that component in preview.custom_job.utils.create_custom_training_job_from_component doesn't have any parameters that share names with any custom job fields
- Add dynamic machine spec support for
preview.custom_job.utils.create_custom_training_job_from_component
. - Add preflight validations for LLM text generation pipeline.
- Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Add Gemini batch prediction support to
v1.model_evaluation.autosxs_pipeline
. - Add Starry Net forecasting pipeline to
preview.starry_net.starry_net_pipeline
- Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Add staging and temp location parameters to prophet trainer component.
- Add input parameter
autorater_prompt_parameters
to_implementation.llm.online_evaluation_pairwise
component. - Mitigate bug in
v1.model_evaluation.autosxs_pipeline
where batch prediction would fail the first time it is run in a project by retrying. - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Use larger base reward model when tuning
text-bison@001
,chat-bison@001
andt5-xxl
with thepreview.llm.rlhf_pipeline
. - Move
preview.model_evaluation.autosxs_pipeline
tov1.model_evaluation.autosxs_pipeline
. - Remove default prediction column names in
v1.model_evaluation.classification_component
component to fix pipeline errors when using bigquery data source. - Move
_implementation.model_evaluation.ModelImportEvaluationOp
component to preview namespacepreview.model_evaluation.ModelImportEvaluationOp
. - Drop support for Python 3.7 since it has reached end-of-life.
- Expand number of regions supported by
preview.llm.rlhf_pipeline
. - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Fix model name preprocess error, pass correct model to
ModelImportEvaluationOp
component inv1.model_evaluation.evaluation_llm_text_generation_pipeline
andv1.model_evaluation.evaluation_llm_classification_pipeline
. - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Add support for
text-bison@002
topreview.llm.rlhf_pipeline
. - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Fix
preview.model_evaluation.autosxs_pipeline
documentation to showautorater_prompt_parameters
as required. - Introduce placeholders:
SERVICE_ACCOUNT_PLACEHOLDER
,NETWORK_PLACEHOLDER
,PERSISTENT_RESOURCE_ID_PLACEHOLDER
andENCRYPTION_SPEC_KMS_KEY_NAME_PLACEHOLDER
- Use
PERSISTENT_RESOURCE_ID_PLACEHOLDER
as the default value ofpersistent_resource_id
forCustomTrainingJobOp
andcreate_custom_training_job_op_from_component
. With this change, custom job created without explicitly settingpersistent_resource_id
will inherit job levelpersistent_resource_id
, if Persistent Resource is set as job level runtime.
- Log TensorBoard metrics from the
preview.llm.rlhf_pipeline
in real time. - Add task_type parameter to
preview.llm.rlaif_pipeline
. - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Fix bug in
preview.llm.rlhf_pipeline
that caused wrong output artifact to be used for inference after training. - Fix issue where AutoSxS was not propagating location to all sub-components.
- Add CMEK support to
preview.llm.infer_pipeline
. - Use
eval_dataset
for train-time evalutation when training a reward model. Requireseval_dataset
to contain the same fields as the preference dataset. - Update the documentation of
GetModel
. - Add CMEK support to
preview.model_evaluation.autosxs_pipeline
. - Updated component and pipeline inputs/outputs to support creating ModelEvaluations for ModelRegistry models in the AutoSxS pipeline.
- Add DRZ-at-rest to
preview.llm.rlhf_pipeline
. - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Fix the missing output of pipeline remote runner.
AutoMLImageTrainingJobRunOp
now passes the model artifacts correctly to downstream components. - Fix the metadata of Model Evaluation resource when row based metrics is disabled in
preview.model_evaluation.evaluation_llm_text_generation_pipeline
. - Support
Jinja2>=3.1.2,<4
. - Support custom AutoSxS tasks.
- Bump supported KFP versions to
kfp>=2.6.0,<=2.7.0
. - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Add CMEK support to
preview.llm.rlhf_pipeline
when tuning inus-central1
with GPUs.
- Use
large_model_reference
formodel_reference_name
when uploading models frompreview.llm.rlhf_pipeline
instead of hardcoding value astext-bison@001
. - Disable caching when resolving model display names for RLHF-tuned models so a unique name is generated on each
preview.llm.rlhf_pipeline
run. - Upload the tuned adapter to Model Registry instead of model checkpoint from
preview.llm.rlhf_pipeline
. - Fix the naming of AutoSxS's question answering task. "question_answer" -> "question_answering".
- Add Vertex model get component (
v1.model.ModelGetOp
). - Migrate to Protobuf 4 (
protobuf>=4.21.1,<5
). Requirekfp>=2.6.0
. - Support setting version aliases in (
v1.model.ModelUploadOp
). - Only run
preview.llm.bulk_inference
pipeline after RLHF tuning for third-party models wheneval_dataset
is provided. - Update LLM Evaluation Pipelines to use
text-bison@002
model by default. - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Add
preview.llm.rlaif_pipeline
that tunes large-language models from AI feedback.
- Release AutoSxS pipeline to preview.
- Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Fix
v1.automl.training_job.AutoMLImageTrainingJobRunOp
ModuleNotFoundError
. - Append
tune-type
to existing labels when uploading models tuned bypreview.llm.rlhf_pipeline
instead of overriding them. - Use
llama-2-7b
for the base reward model when tuningllama-2-13b
with thepreview.llm.rlhf_pipeline
- Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Bump supported KFP versions to kfp>=2.0.0b10,<=2.4.0
- Add LLM Eval pipeline parameter for customizing eval dataset reference ground truth field
- Create new eval dataset preprocessor for formatting eval dataset in tuning dataset format.
- Support customizing eval dataset format in Eval LLM Text Generation Pipeline (
preview.model_evaluation.evaluation_llm_text_generation_pipeline
) and LLM Text Classification Pipeline (preview.model_evaluation.evaluation_llm_classification_pipeline
). Include new LLM Eval Preprocessor component in both pipelines. - Fix the output parameter
output_dir
ofpreview.automl.vision.DataConverterJobOp
. - Fix batch prediction model parameters payload sanitization error .
- Add ability to perform inference with chat datasets to
preview.llm.infer_pipeline
. - Add ability to tune chat models with
preview.llm.rlhf_pipeline
. - Group
preview.llm.rlhf_pipeline
components for better readability. - Add environment variable support to GCPC's
create_custom_training_job_from_component
(bothv1
andpreview
namespaces) - Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Upload tensorboard metrics from
preview.llm.rlhf_pipeline
if atensorboard_resource_id
is provided at runtime. - Support
incremental_train_base_model
,parent_model
,is_default_version
,model_version_aliases
,model_version_description
inAutoMLImageTrainingJobRunOp
. - Add
preview.automl.vision
andDataConverterJobOp
. - Set display names for
preview.llm
pipelines. - Add sliced evaluation metrics support for custom and unstructured AutoML models in evaluation pipeline and evaluation pipeline with feature attribution.
- Support
service_account
inModelBatchPredictOp
. - Release
DataflowFlexTemplateJobOp
to GA namespace (v1.dataflow.DataflowFlexTemplateJobOp
). - Make
model_checkpoint
optional forpreview.llm.infer_pipeline
. If not provided, the base model associated with thelarge_model_reference
will be used. - Bump
apache_beam[gcp]
version in GCPC container image from<2.34.0
to==2.50.0
for compatibility withgoogle-cloud-aiplatform
, which depends onshapely<3.0.0dev
. Note: upgrades togoogle-cloud-pipeline-components
>=2.5.0 and later may require using a Dataflow worker image withapache_beam==2.50.0
. - Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Add support for customizing model_parameters (maxOutputTokens, topK, topP, and temperature) in LLM eval text generation and LLM eval text classification pipelines.
- Disable caching for LLM pipeline tasks that store temporary artifacts.
- Fix the mismatched arguments in 2.4.0 for the Feature Transform Engine component.
- Apply latest GCPC image vulnerability resolutions (base OS and software updates).
- Add support for running tasks on a
PersistentResource
(see CustomJobSpec) viapersistent_resource_id
parameter onpreview.custom_job.CustomTrainingJobOp
andpreview.custom_job.create_custom_training_job_from_component
- Fix use of
encryption_spec_key_name
inv1.custom_job.CustomTrainingJobOp
andv1.custom_job.create_custom_training_job_from_component
- Add feature_selection_pipeline to preview.automl.tabular.
- Bump supported KFP versions to kfp>=2.0.0b10,<=2.2.0
- Add
time_series_dense_encoder_forecasting_pipeline
,learn_to_learn_forecasting_pipeline
,sequence_to_sequence_forecasting_pipeline
, andtemporal_fusion_transformer_forecasting_pipeline
topreview.automl.forecasting
. - Add support for customizing evaluation display name on
v1
andpreview
model_evaluation
pipelines. - Include model version ID in
v1.model.upload_model.ModelUploadOp
'sVertexModel
output (key:model
). The URI and metadataresourceName
field in the outputtedVertexModel
now have@<model_version_id>
appended, corresponding to the model that was just created. Downstream componentsDeleteModel
andUndeployModel
will respect the model version if provided. - Bump KFP SDK upper bound to 2.3.0
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Make LLM pipelines compatible with KFP SDK 2.1.3
- Require KFP SDK <=2.1.3
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Add
preview.llm.infer_pipeline
andpreview.llm.rlhf_pipeline
- Add
automl_tabular_tabnet_trainer
andautoml_tabular_wide_and_deep_trainer
topreview.automl.tabular
andv1.automl.tabular
- Minor feature additions to AutoML components
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Add
preview.model_evaluation.evaluation_llm_classification_pipeline.evaluation_llm_classification_pipeline
- Change AutoML Vision Error Analysis pipeline names (`v1.model_evaluation.vision_model_error_analysis_pipeline' and 'v1.model_evaluation.evaluated_annotation_pipeline')
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Add
preview.model_evaluation.FeatureAttributionGraphComponentOp
pipeline - Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Add AutoML tabular and forecasting components to
preview
namespace - Fix bug where
parent_model
parameter ofModelUploadOp
ignored - Fix circular import bug for model evaluation components
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
Google Cloud Pipeline Components v2 is generally available!
- Use
v1
for GA offerings - Create
preview
namespace for pre-GA offerings (previouslyexperimental
) - Remove
experimental
namespace
- Migrate many components to the
v1
GA namespace - Migrate components to the
preview
namespacepreview.model_evaluation.ModelEvaluationFeatureAttributionOp
preview.model_evaluation.DetectModelBiasOp
preview.model_evaluation.DetectDataBiasOp
preview.dataflow.DataflowFlexTemplateJobOp
- Add many new components:
v1.dataflow.DataflowFlexTemplateJobOp
v1.model.evaluation.vision_model_error_analysis_pipeline
v1.model.evaluation.evaluated_annotation_pipeline
v1.model.evaluation.evaluation_automl_tabular_feature_attribution_pipeline
v1.model.evaluation.evaluation_automl_tabular_pipeline
v1.model.evaluation.evaluation_automl_unstructure_data_pipeline
v1.model.evaluation.evaluation_feature_attribution_pipeline
- Make GCPC artifacts usable in user-defined KFP SDK Python components (Containerized Python Components recommended)
- Change runtime base image to
marketplace.gcr.io/google/ubuntu2004
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Depend on KFP SDK v2 (GCPC v2 is not compatible with KFP v1)
- Set
google-api-core<1.34.0
to avoid 900s timeout - Remove
google-cloud-notebooks
andgoogle-cloud-storage
dependencies
- Refresh GCPC v2 reference documentation
- Assorted minor component interface changes
- Assorted bug fixes
- Change
force_direct_runner
flag toforce_direct_runner_mode
in experimental evaluation components to allow users to choose the runner of the evaluation pipeline - Support upload model with pipeline job id in UploadModel GCPC component
- Change default value of
prediction_score_column
for AutoML Forecasting & Regression components toprediction.value
- Change
dataflow_disk_size
parameter todataflow_disk_size_gb
in all model evaluation components - Remove
aiplatform.CustomContainerTrainingJobRunOp
andaiplatform.CustomPythonPackageTrainingJobRunOp
components
- Additional migrations from the 1.x.x's
experimental
namespace to thev1
andpreview
namespaces
- Fix experimental evaluation component runtime bugs
- Add model evaluation pipelines:
v1.model.evaluation.vision_model_error_analysis_pipeline
v1.model.evaluation.evaluated_annotation_pipeline
v1.model.evaluation.evaluation_automl_tabular_feature_attribution_pipeline
v1.model.evaluation.evaluation_automl_tabular_pipeline
v1.model.evaluation.evaluation_automl_unstructure_data_pipeline
v1.model.evaluation.evaluation_feature_attribution_pipeline
- Make GCPC artifacts usable in user-defined KFP SDK Python Components and add documentation
- Change
force_direct_runner
flag toforce_direct_runner_mode
in experimental evaluation components to allow users to choose the runner of the evaluation pipeline - Add experimental AutoML Forecasting Seq2Seq and Temporal Fusion Transformer pipelines
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- GCPC v2 reference documentation improvements
- Change GCPC base image to
marketplace.gcr.io/google/ubuntu2004
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Fix dataset components
- Fix payload sanitation bug in
google_cloud_pipeline_components.v1.batch_predict_job.ModelBatchPredictOp
- Assorted experimental component bug fixes (note: experimental namespace will be removed in a future pre-release)
- Support sparse layer masking feature selection for
experimental.automl.tabular
classification/regression components - Fixes for GCPC v2 reference documentation
- Fix
experimental.dataflow.DataflowFlexTemplateJobOp
component - Remove unused SDK dependency on
google-cloud-notebooks
andgoogle-cloud-storage
- Add
experimental.dataflow.DataflowFlexTemplateJobOp
component - Remove
aiplatform.CustomContainerTrainingJobRunOp
andaiplatform.CustomPythonPackageTrainingJobRunOp
components - Migrate other
aiplatform.automl_training_job
,aiplatform.ModelUndeployOp
,aiplatform.EndpointDeleteOp
, andaiplatform.ModelDeleteOp
components to the v1 namespace - Deduplicate component definitions between experimental and v1 namespaces
- Change base image to ubuntu OS
- Set google-api-core<1.34.0 to avoid 900s timeout
- Release of GCPC v2 beta
- Supports KFP v2 beta
- Experimental components that already in v1 folder are removed
- Experimental components that are not fully tested (e.g. AutoML, Model Evaluation) are excluded for now, will be added in future releases
- Even though the GCPC package's version is v2, the components under v1 folder have no interface change, so the those components' version remain as v1, decoupled from package version.
- Apply latest GCPC image vulnerability resolutions (base OS and software updates)
- Patch 5de4d78: unpin google-api-core version
- Patch cb7d9a8: Update import_model_evaluation so models with 100+ labels will not import confusion matrices at every threshold
- Add data-filter-split feature back to the ImageTrainingJob component
- Change base image to ubuntu OS
- Set google-api-core<1.34.0 to avoid 900s timeout
- Fix AutoML Table pipeline failing on importing model evaluation metrics
- Fix default value issue in bigquery query API
- Cherrypick e358dee2f8d5c01580438ee54988f01fc3f16a7c and snap a new release
- Fix images for BQML components
- Cherrypick d1f1ee9f2bbd09df7ea6ab51b21f07ba5f86c871 and snap a new release
- Fix aiplatform & v1 batch predict job to work with KFP v2
- Release Structured Data team's updated components and pipelines
- Support a HyperparameterTuningJobWithMetrics type to take execution_metrics path
- Fix aiplatform serialization
- Release Structured Data team's updated components and pipelines
- Add components for natural language: training TFHub model and preprocessing component for batch prediction
- Fix aiplatform & v1 batch predict job to work with KFP v2
- Fix serialization for aiplatform components
- Update Dataproc doc links
- Update tags in Structured Data team's forecasting pipelines
- Propagate vertex system labels to the downstream resources
- Release Structured Data team's updated components and pipelines
- Fix Dataproc component doc to indicate that batch_id is optional
- Simplify create_custom_training_job_op_from_component
- Fix list and dict types for converted aiplatform components
- Support uploading for model versions for ModelUploadOp
- Add text classification data processing component and training component
- Propagates vertex system labels to the downstream resources for batch prediction job
- Add DataprocBatch resource to gcp_resources output parameter
- Support serving default in bq export model job op
- Temporary fix for artifact types
- Sync GCPC staging to prod to include AutoML model comparison and prophet pipelines
- Update documentation for Eval components
- Update HP tuning sample notebook
- Improve folder structure for evaluation components
- Model Evaluation, rename EvaluationDataSplitterOp to TargetFieldDataRemoverOp, rename ground_truth_column to target_field, rename class_names to class_labels, and remove key_columns input
- Add model input to vertex ai model evaluation component
- Bigquery: Update public doc for evaluate model per customer feedback
- Add Infra Validation remote runner
- Add notification v1 doc to the v1 page
- AutoML: Sync GCPC staging to prod to include bug fix for built-in algorithms
- Add notification v1 doc
- Convert all v1 components into individual launchers and remote runners
- Update AutoML Tables components to have latest SDK features
- Add support for staging Dataflow options (sdk_location and extra_package)
- AutoML: Sync GCPC staging to prod to include recent API changes
- TensorBoard: Make some input parameters optional to provide better user experience
- TensorBoard: Make some input parameters optional to provide better user experience
- Fix input parameter in tensorboard experiment creator component
- Convert bigquery components into individual launchers and remote runners
- Model Evaluation: Add metadata field for pipeline resource name
- Add special case in json_util.py where explanation_spec metadata outputs can have empty values
- Update the docstring for missing arguments on feature_importance component
- Create new tensorboard experiment creator component
- Remove unused input in evaluation classification yaml
- Update the docstring for exported_model_path in export_model
- Propagating labels for explain_forecast_model component
- Model Evaluation - Add evaluation forecasting default of 0.5 for quantiles
- Dataproc - Fix missing error payload from logging
- Added BigQuery input support to evaluation components
- Model Evaluation - Allow dataset paths list
- Fix the docstring for ml_advanced_weights component
- Fix the duplicated arguments in bigquery_ml_global_explain_job
- Import importer from dsl namespace instead
- Convert batch_prediction_job_remote_runner into individual launcher
- Model Evaluation - Give evaluation preprocessing components unique dataflow job names
- Add vertex_notification_email component on v1 folder
- Model Evaluation - Rearrange json and yaml files in e2e test to eliminate duplicate defining and reading
- Model Evaluation - Update JSON templates for evaluation
- Model Evaluation - Split evaluation component into classification, forecasting, and regression evaluation & create artifact types for
google.__Metrics
- Model Evaluation - Match predictions input argument name to other Evaluation components
- Model Evaluation - Update import_model_evaluation component to accept new
google.___Metrics
artifact types - Model Evaluation - Update regression and forecasting to contain ground truth input fields
- Reverse re.findall order of arguments to (pattern, string) in job_remote_runner
- Model Evaluation - Update evaluation container to v0.5 for data sampler and splitter preprocessing components
- Evaluation - Separate feature attribution from evaluation component to its own component
- AutoML Tables - Include fix AMI issues for criteo dataset
- AutoML Tables - Change Vertex evaluation pipeline templates
- Model Evaluation - Import model evaluation slices when available in the metrics
- Model Evaluation - Add nargs to allow for empty string input by component
- Sync AutomL components' code to GCPC codebase to reflect bug fix in FTE component spec
- Auto-generate batch id if none is specified in Dataproc components
- Add ground_truth_column input argument to data splitter component
- Temporarily pin apache_beam version to <2.34.0 due to apache/beam#22208.
- Remove kms key name from the drop model interface.
- Move new BQ components from experimental to v1
- Fix the problem that AutoML Tabular pipeline could fail when using large number of features
- AutoML Tables - Fix AutoML Tabular pipeline always running evaluation.
- AutoML Tables - Fix AutoML Tabular pipeline when there are a large set of input features.
- Model Evaluation - Evaluation preprocessing component change output GCS artifact to JsonArray.
- Move generating feature ranking to utils to be available in SDK
- Change JSON to primitive types for Tables v1, built-in algorithm and internal pipelines
- AutoML Tables - update Tabular workflow to reference 1.0.10 launcher image
- AutoML Tables - Add dataflow_service_account to specify custom service account to run dataflow jobs for stats_and_example_gen and transform components.
- AutoML Tables - Update skip_architecture_search pipeline
- AutoML Tables - Add algorithm to pipeline, also switch the default algorithm to be AMI
- AutoML Tables - Use feature transform engine docker image for related components
- AutoML Tables - Make calculation logic in SDK helper function run inside a component for Tables v1 and skip_architecture_search pipelines
- AutoML Tables - weight_column_name -> weight_column and target_column_name -> target_column for Tables v1 and skip_architecture_search pipelines
- AutoML Tables - For built-in algorithms, the transform_config input is expected to be a GCS file path.
- AutoML Tables - Make generate analyze/transform data and split materialized data as components
- AutoML Tables - Add automl_tabular_pipeline pipeline for Tabular Workflow.
- AutoML Tables - Use FTE image directly to launch FTE component
- Model Evaluation - Add display name to import model evaluation component
- Model Evaluation - Update default number of workers.
- Add custom component to automl_tabular default pipeline
- Add transformations_path to stats_and_example_gen and enable for v1 default pipeline and testing pipeline
- Use 'unmanaged_container_model' instead of 'model' in infra validator component for automl tabular
- Update evaluation component to v0.3
- Add new Evaluation components 'evaluation_data_sampler' and 'evaluation_data_splitter'
- Make AutoML Tables ensemble also output explanation_metadata artifact
- AutoML Tables - decouple transform config planner from metadata
- AutoML Tables - Feature transform engine config planner to generate training schema & instance baseline
- FTE transform config passed as path to config file instead of directly as string to FTE
- Support BigQuery ML weights job component
- FTE now outputs training schema.
- Support BigQuery ML reconstruction loss and trial info job components
- Adding ML.TRAINING_INFO KFP and ML.EXPLAIN_PREDICT BQ Component.
- Add additional experiments in distillation pipeline.
- Support BigQuery ML advanced weights job component.
- Support BigQuery drop model job components.
- Support BigQuery ML centroids job components.
- Wide and Deep and Tabnet models both now use the Feature Transform Engine pipeline instead of the Transform component.
- Adding ML.CONFUSION_MATRIX KFP BQ Component.
- Adding ML.FEATURE_INFO KFP BQ Component.
- Merge distill_skip_evaluation and skip_evaluation pipelines with default pipeline using dsl.Condition
- Adding ML.ROC_CURVE KFP BQ Component.
- Adding ML.PRINCIPAL_COMPONENTS and ML.PRINCIPAL_COMPONENT_INFO KFP BQ component.
- Adding ML.FEATURE_IMPORTANCE KFP BQ Component.
- Add ML.ARIMA_COEFFICIENTS in component.yaml
- Adding ML.Recommend KFP BQ component.
- Add ML.ARIMA_EVALUATE in component.yaml
- KFP component for ml.explain_forecast
- KFP component for ml.forecast
- Add distill + evaluation pipeline for Tables
- Adding ML.GLOBAL_EXPLAIN KFP BQ Component.
- KFP component for ml.detect_anomalies
- Make stats-gen component to support running with example-gen only mode
- Fix AutoML Tables pipeline and builtin pipelines on VPC-SC environment.
- Preserve empty features in explanation_spec
- Use BigQuery batch queries in ARIMA pipeline after first 50 queries
- Stats Gen and Feature Transform Engine pipeline integration.
- Add window config to ARIMA pipeline
- Removed default location setting from AutoML components and documentation.
- Update default machine type to c2-standard-16 for built-in algorithms Custom and HyperparameterTuning Jobs
- Use float instead of int max windows, which caused ARIMA pipeline failure
- Renamed "Feature Transform Engine Transform Configuration" component to "Transform Configuration Planner" for clarity.
- Preserve empty features in explanation_spec
- Change json util to not remove empty primitives in a list.
- Add model eval component to built-in algorithm default pipelines
- Quick fix to Batch Prediction component input "bigquery_source_input_uri"
- Allow metrics and evaluated examples tables to be overwritten.
- Replace custom copy_table component with BQ first-party query component.
- Support vpc in feature selection.
- Add import eval metrics to model to AutoML Tables default pipeline.
- Add default Wide & Deep study_spec_parameters configs and add helper function to utils.py to get parameters.
- Update import evaluation metrics component.
- Support parameterized input for reserved_ip_range and other Vertex Training parameters in custom job utility.
- Generate feature selection tuning pipeline and test utils.
- Add retries to queries hitting BQ write quota on BQML Arima pipeline.
- Minor changes to the feature transform engine and transform configuration component specs to support their integration.
- Update Executor component for Pipeline to support kernel_spec.
- Add default TabNet study_spec_parameters_override configs for different dataset sizes and search space modes and helper function to get the parameters.
- Add VPC-SC and CMEK support for the experimental evaluation component
- Add an import evaluation metrics component
- Modify AutoML Tables template JSON pipeline specs
- Add feature transform engine AutoML Table component.
- Create alias for create_custom_training_job_op_from_component as create_custom_training_job_from_component
- Add support for env variables in Custom_Job component.
- Add API docs for Vertex Notification Email
- Add template JSON pipeline spec for running evaluation on a managed GCP Vertex model.
- Update documentation for Dataproc Serverless components v1.0.
- Use if:cond:then when specifying image name in built-in algorithm hyperparameter tuning job component and add separate hyperparameter tuning job default pipelines for TabNet and Wide & Deep
- Add gcp_resources in the eval component output
- Add downsampled_test_split_json to example_and_stats_gen component.
- Dataproc Serverless components v1.0 launch.
- Bump google-cloud-aiplatform version
- Fix HP Tuning documentation, fixes #7460
- Use feature ranking and selected features in AutoML Tables stage 1 tuning component.
- Update distill_skip_evaluation_pipeline for performance improvement.
- Add experimental email notification component
- add docs for create_custom_training_job_op_from_component
- Remove ForecastingTrainingWithExperimentsOp component.
- Use unmanaged_container_model for model_upload for AutoML Tables pipelines
- add nfs mount support for create_custom_training_job_op_from_component
- Implement cancellation for dataproc components
- bump google-api-core version to 2.0+
- Add retry for batch prediction component
- add enable_web_access for create_custom_training_job_op_from_component
- remove remove training_filter_split, validation_filter_split, test_filter_split from automl components
- Update the dataproc component docs
- Implement cancellation propagation
- Remove encryption key in input for BQ create model
- Add Dataproc Batch components
- Add AutoML Tables Wide & Deep trainer component and pipeline
- Create GCPC v1 and readthedocs for v1
- Fix bug when ExplanationMetadata.InputMetadata field is provided the batch prediction job component
- Update BQML export model input from string to artifact
- Move model/endpoint/job/bqml compoennts to 1.0 namespace
- Expose
enable_web_access
andreserved_ip_ranges
for custom job component - Add delete model and undeploy model components
- Add utility library for google artifacts
- Fixes for BQML components
- Add util functions for HP tuning components and update samples
- Add BigqueryQueryJobOp, BigqueryCreateModelJobOp, BigqueryExportModelJobOp and BigqueryPredictModelJobOp components
- Add ModelEvaluationOp component
- Accept UnmanagedContainerModel artifact in Batch Prediction component
- Add util components and fix YAML for HP Tuning Job component; delete lightweight python version
- Add generic custom training job component
- Fix Dataflow error log reporting and component sample
- Update custom job name to create_custom_training_job_op_from_component
- Remove special handling for "=" in remote runner.
- Bug fixes and documentation updates.
- Dataflow and wait components
- Bug fixes
- Update the CustomJob component interface, and rename to custom_training_job_op
- Define new artifact types for Google Cloud resources.
- Update the AI Platform components. Added the component YAML and uses the new Google artifact types
- Add Vertex notebook component
- Various doc updates
- Add support for labels in custom_job wrapper.
- Add a component that connects the forecasting preprocessing and training components.
- Write GCP_RESOURCE proto for the custom_job output.
- Expose Custom Job parameters Service Account, Network and CMEK via Custom Job wrapper.
- Increase KFP min version dependency.
- AUpdate documentations for GCPC components.
- Update typing checks to include Python3.6 deprecated types.
- Experimental component for Model Forecast.
- Fixed issue with parameter passing for Vertex AI components
- Simplify auto generated API docs
- Fix parameter passing for explainability on ModelUploadOp
- Update naming of project and location parameters for all for GCPC components
- Experimental component for vertex forecasting preprocessing and validation
- Experimental component for tfp_anomaly_detection.
- Experimental module for Custom Job Wrapper.
- Fix to include YAML files in PyPI package.
- Restructure the google_cloud_pipeline_components.
- Use correct dataset type when passing dataset to CustomTraining.
- Bump google-cloud-aiplatform to 1.1.1.
- Add components for AutoMLForecasting.
- Update API documentation.
- Fix issue with latest version of KFP not accepting pipeline_root in kfp.compile.
- Fix Compatibility with latest AI Platform name change to replace resource name class with Vertex AI
- Initial release of the Python SDK with data and model managemnet operations for Image, Text, Tabular, and Video Data.